196,777 research outputs found

    ARTSCENE: A Neural System for Natural Scene Classification

    Full text link
    How do humans rapidly recognize a scene? How can neural models capture this biological competence to achieve state-of-the-art scene classification? The ARTSCENE neural system classifies natural scene photographs by using multiple spatial scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes multiple scales of scenic information, ranging from global gist to local properties of textures. The model can incrementally learn and predict scene identity by gist information alone and can improve performance through selective attention to scenic textures of progressively smaller size. ARTSCENE discriminates 4 landscape scene categories (coast, forest, mountain and countryside) with up to 91.58% correct on a test set, outperforms alternative models in the literature which use biologically implausible computations, and outperforms component systems that use either gist or texture information alone. Model simulations also show that adjacent textures form higher-order features that are also informative for scene recognition.National Science Foundation (NSF SBE-0354378); Office of Naval Research (N00014-01-1-0624

    OLT: A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets

    Get PDF
    In this work we present the Object Labeling Toolkit (OLT), a set of software components publicly available for helping in the management and labeling of sequential RGB-D observations collected by a mobile robot. Such a robot can be equipped with an arbitrary number of RGB-D devices, possibly integrating other sensors (e.g. odometry, 2D laser scanners, etc.). OLT first merges the robot observations to generate a 3D reconstruction of the scene from which object segmentation and labeling is conveniently accomplished. The annotated labels are automatically propagated by the toolkit to each RGB-D observation in the collected sequence, providing a dense labeling of both intensity and depth images. The resulting objects’ labels can be exploited for many robotic oriented applications, including high-level decision making, semantic mapping, or contextual object recognition. Software components within OLT are highly customizable and expandable, facilitating the integration of already-developed algorithms. To illustrate the toolkit suitability, we describe its application to robotic RGB-D sequences taken in a home environment.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish grant pro- gram FPU-MICINN 2010 and the Spanish projects TAROTH: New developments toward a Robot at Home (DPI2011-25483) and PROMOVE: Advances in mobile robotics for promoting independent life of elders (DPI2014-55826-R

    OSGAR: a scene graph with uncertain transformations

    Get PDF
    An important problem for augmented reality is registration error. No system can be perfectly tracked, calibrated or modeled. As a result, the overlaid graphics are not aligned perfectly with objects in the physical world. This can be distracting, annoying or confusing. In this paper, we propose a method for mitigating the effects of registration errors that enables application developers to build dynamically adaptive AR displays. Our solution is implemented in a programming toolkit called OSGAR. Built upon OpenSceneGraph (OSG), OSGAR statistically characterizes registration errors, monitors those errors and, when a set of criteria are met, dynamically adapts the display to mitigate the effects of the errors. Because the architecture is based on a scene graph, it provides a simple, familiar and intuitive environment for application developers. We describe the components of OSGAR, discuss how several proposed methods for error registration can be implemented, and illustrate its use through a set of examples
    corecore