580 research outputs found

    Efficient and Secure ECDSA Algorithm and its Applications: A Survey

    Get PDF
    Public-key cryptography algorithms, especially elliptic curve cryptography (ECC)and elliptic curve digital signature algorithm (ECDSA) have been attracting attention frommany researchers in different institutions because these algorithms provide security andhigh performance when being used in many areas such as electronic-healthcare, electronicbanking,electronic-commerce, electronic-vehicular, and electronic-governance. These algorithmsheighten security against various attacks and the same time improve performanceto obtain efficiencies (time, memory, reduced computation complexity, and energy saving)in an environment of constrained source and large systems. This paper presents detailedand a comprehensive survey of an update of the ECDSA algorithm in terms of performance,security, and applications

    MicroWalk: A Framework for Finding Side Channels in Binaries

    Full text link
    Microarchitectural side channels expose unprotected software to information leakage attacks where a software adversary is able to track runtime behavior of a benign process and steal secrets such as cryptographic keys. As suggested by incremental software patches for the RSA algorithm against variants of side-channel attacks within different versions of cryptographic libraries, protecting security-critical algorithms against side channels is an intricate task. Software protections avoid leakages by operating in constant time with a uniform resource usage pattern independent of the processed secret. In this respect, automated testing and verification of software binaries for leakage-free behavior is of importance, particularly when the source code is not available. In this work, we propose a novel technique based on Dynamic Binary Instrumentation and Mutual Information Analysis to efficiently locate and quantify memory based and control-flow based microarchitectural leakages. We develop a software framework named \tool~for side-channel analysis of binaries which can be extended to support new classes of leakage. For the first time, by utilizing \tool, we perform rigorous leakage analysis of two widely-used closed-source cryptographic libraries: \emph{Intel IPP} and \emph{Microsoft CNG}. We analyze 1515 different cryptographic implementations consisting of 112112 million instructions in about 105105 minutes of CPU time. By locating previously unknown leakages in hardened implementations, our results suggest that \tool~can efficiently find microarchitectural leakages in software binaries

    Systematic Literature Review of EM-SCA Attacks on Encryption

    Full text link
    Cryptography is vital for data security, but cryptographic algorithms can still be vulnerable to side-channel attacks (SCAs), physical assaults exploiting power consumption and EM radiation. SCAs pose a significant threat to cryptographic integrity, compromising device keys. While literature on SCAs focuses on real-world devices, the rise of sophisticated devices necessitates fresh approaches. Electromagnetic side-channel analysis (EM-SCA) gathers information by monitoring EM radiation, capable of retrieving encryption keys and detecting malicious activity. This study evaluates EM-SCA's impact on encryption across scenarios and explores its role in digital forensics and law enforcement. Addressing encryption susceptibility to EM-SCA can empower forensic investigators in overcoming encryption challenges, maintaining their crucial role in law enforcement. Additionally, the paper defines EM-SCA's current state in attacking encryption, highlighting vulnerable and resistant encryption algorithms and devices, and promising EM-SCA approaches. This study offers a comprehensive analysis of EM-SCA in law enforcement and digital forensics, suggesting avenues for further research

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    Circuit-Variant Moving Target Defense for Side-Channel Attacks on Reconfigurable Hardware

    Get PDF
    With the emergence of side-channel analysis (SCA) attacks, bits of a secret key may be derived by correlating key values with physical properties of cryptographic process execution. Power and Electromagnetic (EM) analysis attacks are based on the principle that current flow within a cryptographic device is key-dependent and therefore, the resulting power consumption and EM emanations during encryption and/or decryption can be correlated to secret key values. These side-channel attacks require several measurements of the target process in order to amplify the signal of interest, filter out noise, and derive the secret key through statistical analysis methods. Differential power and EM analysis attacks rely on correlating actual side-channel measurements to hypothetical models. This research proposes increasing resistance to differential power and EM analysis attacks through structural and spatial randomization of an implementation. By introducing randomly located circuit variants of encryption components, the proposed moving target defense aims to disrupt side-channel collection and correlation needed to successfully implement an attac

    Minerva: The curse of ECDSA nonces

    Get PDF
    We present our discovery of a group of side-channel vulnerabilities in implementations of the ECDSA signature algorithm in a widely used Atmel AT90SC FIPS 140-2 certified smartcard chip and five cryptographic libraries (libgcrypt, wolfSSL, MatrixSSL, SunEC/OpenJDK/Oracle JDK, Crypto++). Vulnerable implementations leak the bit-length of the scalar used in scalar multiplication via timing. Using leaked bit-length, we mount a lattice attack on a 256-bit curve, after observing enough signing operations. We propose two new methods to recover the full private key requiring just 500 signatures for simulated leakage data, 1200 for real cryptographic library data, and 2100 for smartcard data. The number of signatures needed for a successful attack depends on the chosen method and its parameters as well as on the noise profile, influenced by the type of leakage and used computation platform. We use the set of vulnerabilities reported in this paper, together with the recently published TPM-FAIL vulnerability as a basis for real-world benchmark datasets to systematically compare our newly proposed methods and all previously published applicable lattice-based key recovery methods. The resulting exhaustive comparison highlights the methods\u27 sensitivity to its proper parametrization and demonstrates that our methods are more efficient in most cases. For the TPM-FAIL dataset, we decreased the number of required signatures from approximately 40 000 to mere 900
    • …
    corecore