734,313 research outputs found

    Low-Dimensional Topology of Information Fusion

    Full text link
    We provide an axiomatic characterization of information fusion, on the basis of which we define an information fusion network. Our construction is reminiscent of tangle diagrams in low dimensional topology. Information fusion networks come equipped with a natural notion of equivalence. Equivalent networks `contain the same information', but differ locally. When fusing streams of information, an information fusion network may adaptively optimize itself inside its equivalence class. This provides a fault tolerance mechanism for such networks.Comment: 8 pages. Conference proceedings version. Will be superceded by a journal versio

    Reconfiguration of Distributed Information Fusion System ? A case study

    Get PDF
    Information Fusion Systems are now widely used in different fusion contexts, like scientific processing, sensor networks, video and image processing. One of the current trends in this area is to cope with distributed systems. In this context, we have defined and implemented a Dynamic Distributed Information Fusion System runtime model. It allows us to cope with dynamic execution supports while trying to maintain the functionalities of a given Dynamic Distributed Information Fusion System. The paper presents our system, the reconfiguration problems we are faced with and our solutions.Comment: 6 pages - Preprint versio

    Fusion of pixel-based and object-based features for classification of urban hyperspectral remote sensing data

    Get PDF
    Hyperspectral imagery contains a wealth of spectral and spatial information that can improve target detection and recognition performance. Typically, spectral information is inferred pixel-based, while spatial information related to texture, context and geometry are deduced on a per-object basis. Existing feature extraction methods cannot fully utilize both the spectral and spatial information. Data fusion by simply stacking different feature sources together does not take into account the differences between feature sources. In this paper, we propose a feature fusion method to couple dimension reduction and data fusion of the pixel- and object-based features of hyperspectral imagery. The proposed method takes into account the properties of different feature sources, and makes full advantage of both the pixel- and object-based features through the fusion graph. Experimental results on classification of urban hyperspectral remote sensing image are very encouraging

    Improving acoustic vehicle classification by information fusion

    No full text
    We present an information fusion approach for ground vehicle classification based on the emitted acoustic signal. Many acoustic factors can contribute to the classification accuracy of working ground vehicles. Classification relying on a single feature set may lose some useful information if its underlying sound production model is not comprehensive. To improve classification accuracy, we consider an information fusion diagram, in which various aspects of an acoustic signature are taken into account and emphasized separately by two different feature extraction methods. The first set of features aims to represent internal sound production, and a number of harmonic components are extracted to characterize the factors related to the vehicle’s resonance. The second set of features is extracted based on a computationally effective discriminatory analysis, and a group of key frequency components are selected by mutual information, accounting for the sound production from the vehicle’s exterior parts. In correspondence with this structure, we further put forward a modifiedBayesian fusion algorithm, which takes advantage of matching each specific feature set with its favored classifier. To assess the proposed approach, experiments are carried out based on a data set containing acoustic signals from different types of vehicles. Results indicate that the fusion approach can effectively increase classification accuracy compared to that achieved using each individual features set alone. The Bayesian-based decision level fusion is found fusion is found to be improved than a feature level fusion approac

    Distributed Detection over Fading MACs with Multiple Antennas at the Fusion Center

    Full text link
    A distributed detection problem over fading Gaussian multiple-access channels is considered. Sensors observe a phenomenon and transmit their observations to a fusion center using the amplify and forward scheme. The fusion center has multiple antennas with different channel models considered between the sensors and the fusion center, and different cases of channel state information are assumed at the sensors. The performance is evaluated in terms of the error exponent for each of these cases, where the effect of multiple antennas at the fusion center is studied. It is shown that for zero-mean channels between the sensors and the fusion center when there is no channel information at the sensors, arbitrarily large gains in the error exponent can be obtained with sufficient increase in the number of antennas at the fusion center. In stark contrast, when there is channel information at the sensors, the gain in error exponent due to having multiple antennas at the fusion center is shown to be no more than a factor of (8/pi) for Rayleigh fading channels between the sensors and the fusion center, independent of the number of antennas at the fusion center, or correlation among noise samples across sensors. Scaling laws for such gains are also provided when both sensors and antennas are increased simultaneously. Simple practical schemes and a numerical method using semidefinite relaxation techniques are presented that utilize the limited possible gains available. Simulations are used to establish the accuracy of the results.Comment: 21 pages, 9 figures, submitted to the IEEE Transactions on Signal Processin
    corecore