4,876 research outputs found

    Particle swarm optimization with composite particles in dynamic environments

    Get PDF
    This article is placed here with the permission of IEEE - Copyright @ 2010 IEEEIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.This work was supported in part by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant 70931001 and 70771021, the Science Fund for Creative Research Group of the NNSF of China under Grant 60821063 and 70721001, the Ph.D. Programs Foundation of the Ministry of education of China under Grant 200801450008, and by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    Optimizing Photonic Nanostructures via Multi-fidelity Gaussian Processes

    Get PDF
    We apply numerical methods in combination with finite-difference-time-domain (FDTD) simulations to optimize transmission properties of plasmonic mirror color filters using a multi-objective figure of merit over a five-dimensional parameter space by utilizing novel multi-fidelity Gaussian processes approach. We compare these results with conventional derivative-free global search algorithms, such as (single-fidelity) Gaussian Processes optimization scheme, and Particle Swarm Optimization---a commonly used method in nanophotonics community, which is implemented in Lumerical commercial photonics software. We demonstrate the performance of various numerical optimization approaches on several pre-collected real-world datasets and show that by properly trading off expensive information sources with cheap simulations, one can more effectively optimize the transmission properties with a fixed budget.Comment: NIPS 2018 Workshop on Machine Learning for Molecules and Materials. arXiv admin note: substantial text overlap with arXiv:1811.0075
    corecore