91 research outputs found

    Coded Slotted ALOHA: A Graph-Based Method for Uncoordinated Multiple Access

    Full text link
    In this paper, a random access scheme is introduced which relies on the combination of packet erasure correcting codes and successive interference cancellation (SIC). The scheme is named coded slotted ALOHA. A bipartite graph representation of the SIC process, resembling iterative decoding of generalized low-density parity-check codes over the erasure channel, is exploited to optimize the selection probabilities of the component erasure correcting codes via density evolution analysis. The capacity (in packets per slot) of the scheme is then analyzed in the context of the collision channel without feedback. Moreover, a capacity bound is developed and component code distributions tightly approaching the bound are derived.Comment: The final version to appear in IEEE Trans. Inf. Theory. 18 pages, 10 figure

    Massive Grant-Free Access with Massive MIMO and Spatially Coupled Replicas

    Get PDF
    Massive multiple access schemes, capable of serving a large number of uncoordinated devices while fulfilling reliability and latency constraints, are proposed. The schemes belong to the class of grant-free coded random access protocols and are tailored to massive multiple input multiple output (MIMO) base station processing. High reliability is obtained owing to an intra-frame spatial coupling effect, triggered by a simple device access protocol combined with acknowledgements (ACKs) from the base station. To provide system design guidelines, analytical bounds on error floor and latency are also derived. The proposed schemes are particularly interesting to address the challenges of massive machine-type communications in the framework of next generation massive multiple access systems

    On the Performance of Irregular Repetition Slotted Aloha with Multiple Packet Reception

    Get PDF
    International audienceA modern method of random access for packet networks, named ``Irregular Repetition Slotted Aloha (IRSA)'', had been proposed: it is based repeating transmitted packets, and on the use of successive interference cancellation at the receiver. In classical idealized settings of slotted random access protocols (where slotted ALOHA achieves 1/e), it has been shown that IRSA could asymptotically achieve the maximal throughput of 1 packet per slot. Additionally, IRSA had previously been studied for many different variants and settings, including the case where the receiver is equipped with ``multiple-packet reception'' (MPR) capability.In this article, we extensively revisit the case of IRSA with MPR. First, one of our major results is the proof that K-IRSA cannot reach the natural bound of throughput, and we prove a new, lower bound for its performance. Second, we give a simple expression for its excellent loss rate at lower loads. Third, we show how to formulate the search for the appropriate parameters of IRSA as an optimization problem, and how to solve it efficiently. By doing that for a comprehensive set of parameters, and by providing this work with simulations, we give numerical results that shed light on the performance of IRSA with MPR

    Modern Random Access for Satellite Communications

    Full text link
    The present PhD dissertation focuses on modern random access (RA) techniques. In the first part an slot- and frame-asynchronous RA scheme adopting replicas, successive interference cancellation and combining techniques is presented and its performance analysed. The comparison of both slot-synchronous and asynchronous RA at higher layer, follows. Next, the optimization procedure, for slot-synchronous RA with irregular repetitions, is extended to the Rayleigh block fading channel. Finally, random access with multiple receivers is considered.Comment: PhD Thesis, 196 page
    • …
    corecore