3 research outputs found

    On the effectiveness of an optimization method for the traffic of TCP-based multiplayer online games

    Get PDF
    This paper studies the feasibility of using an optimization method, based on multiplexing and header compression, for the traffic of Massively Multiplayer Online Role Playing Games (MMORPGs) using TCP at the Transport Layer. Different scenarios where a number of flows share a common network path are identified. The adaptation of the multiplexing method is explained, and a formula of the savings is devised. The header compression ratio is obtained using real traces of a popular game and a statistical model of its traffic is used to obtain the bandwidth saving as a function of the number of players and the multiplexing period. The obtained savings can be up to 60 % for IPv4 and 70 % for IPv6. A Mean Opinion Score model from the literature is employed to calculate the limits of the multiplexing period that can be used without harming the user experience. The interactions between multiplexed and non-multiplexed flows, sharing a bottleneck with different kinds of background traffic, are studied through simulations. As a result of the tests, some limits for the multiplexing period are recommended: the unfairness between players can be low if the value of the multiplexing period is kept under 10 or 20 ms. TCP background flows using SACK (Selective Acknowledgment) and Reno yield better results, in terms of fairness, than Tahoe and New Reno. When UDP is used for background traffic, high values of the multiplexing period may stress the unfairness between flows if network congestion is severe

    Specification of Smart AP solutions - version 2

    Get PDF
    This document includes the specification of the second version of the Smart Access Point (AP) Solutions, which are being developed within WP3 of the Wi-5 project. After the Literature Review, a global view of the Wi-5 architecture is presented which includes not only the Smart AP Solutions but also the Cooperative Functionalities being developed in WP4. Next, the Smart AP Solutions are described including the summary of the general approach being followed based on Light Virtual APs (LVAPs). The functionalities enabling Radio Resource Management (i.e. Dynamic Channel Allocation, Load Balancing and Power Control) are reported in detail and the current status of the implementation of the solutions is detailed, with a set of improvements aimed at integrating the support of different channels within the Wi-5 framework. A multi-channel handoff scheme has been designed, requiring a good synchronisation between the different events, in order to make the LVAP switching happen at the same moment when the STA switches its channel. In addition, the beacon generation has been modified in order to improve the scalability and to give a better user experience during handoffs. Tests measuring the handoff delay are presented using three wireless cards from different manufacturers, and using as test traffic a flow of an online game with real-time constraints. The results show that fast handovers ranging from 30 to 200 milliseconds can be achieved. The savings provided by frame aggregation, and its effect on subjective quality have also been studied. A methodology including subjective tests with real users has evaluated this effect, using paired comparison. The results indicate that bandwidth usage savings and especially significant packet rate reduction can be obtained without degrading players’ Quality of Experience (QoE), as long as the overall latency is kept under 100ms. An important finding coming from these results is that the players do not register delay variation introduced by multiplexing
    corecore