2,802 research outputs found

    Class imbalance ensemble learning based on the margin theory

    Get PDF
    The proportion of instances belonging to each class in a data-set plays an important role in machine learning. However, the real world data often suffer from class imbalance. Dealing with multi-class tasks with different misclassification costs of classes is harder than dealing with two-class ones. Undersampling and oversampling are two of the most popular data preprocessing techniques dealing with imbalanced data-sets. Ensemble classifiers have been shown to be more effective than data sampling techniques to enhance the classification performance of imbalanced data. Moreover, the combination of ensemble learning with sampling methods to tackle the class imbalance problem has led to several proposals in the literature, with positive results. The ensemble margin is a fundamental concept in ensemble learning. Several studies have shown that the generalization performance of an ensemble classifier is related to the distribution of its margins on the training examples. In this paper, we propose a novel ensemble margin based algorithm, which handles imbalanced classification by employing more low margin examples which are more informative than high margin samples. This algorithm combines ensemble learning with undersampling, but instead of balancing classes randomly such as UnderBagging, our method pays attention to constructing higher quality balanced sets for each base classifier. In order to demonstrate the effectiveness of the proposed method in handling class imbalanced data, UnderBagging and SMOTEBagging are used in a comparative analysis. In addition, we also compare the performances of different ensemble margin definitions, including both supervised and unsupervised margins, in class imbalance learning

    An Oversampling Mechanism for Multimajority Datasets using SMOTE and Darwinian Particle Swarm Optimisation

    Get PDF
    Data skewness continues to be one of the leading factors which adversely impacts the machine learning algorithms performance. An approach to reduce this negative effect of the data variance is to pre-process the former dataset with data level resampling strategies. Resampling strategies have been seen in two forms, oversampling and undersampling. An oversampling strategy is proposed in this article for tackling multiclass imbalanced datasets. This proposed approach optimises the state-of-the-art oversampling technique SMOTE with the Darwinian Particle Swarm Optimization technique. This proposed method DOSMOTE generates synthetic optimised samples for balancing the datasets. This strategy will be more effective on multimajority datasets.  An experimental study is performed on peculiar multimajority datasets to measure the effectiveness of the proposed approach. As a result, the proposed method produces promising results when compared to the conventional oversampling strategies

    Predicting Pulsars from Imbalanced Dataset with Hybrid Resampling Approach

    Get PDF
    Pulsar stars, usually neutron stars, are spherical and compact objects containing a large quantity of mass. Each pulsar star possesses a magnetic field and emits a slightly different pattern of electromagnetic radiation which is used to identify the potential candidates for a real pulsar star. Pulsar stars are considered an important cosmic phenomenon, and scientists use them to study nuclear physics, gravitational waves, and collisions between black holes. Defining the process of automatic detection of pulsar stars can accelerate the study of pulsar stars by scientists. This study contrives an accurate and efficient approach for true pulsar detection using supervised machine learning. For experiments, the high time-resolution (HTRU2) dataset is used in this study. To resolve the data imbalance problem and overcome model overfitting, a hybrid resampling approach is presented in this study. Experiments are performed with imbalanced and balanced datasets using well-known machine learning algorithms. Results demonstrate that the proposed hybrid resampling approach proves highly influential to avoid model overfitting and increase the prediction accuracy. With the proposed hybrid resampling approach, the extra tree classifier achieves a 0.993 accuracy score for true pulsar star prediction
    • …
    corecore