5,974 research outputs found

    Has the time come for an older driver vehicle?

    Full text link
    The population of the world is growing older. As people grow older they are more likely to experience declines that can make operating a personal automobile more difficult. Once driving abilities begin to decline, older adults are often faced with decreased mobility. Due to the preference for and pervasiveness of the personal automobile for satisfying mobility needs, there is a global necessity to keep older adults driving for as long as they can safely do so. In this report we explore the question: Has the time come for an older driver vehicle? Great gains in safe mobility could be made by designing automobiles that take into account, and help overcome, some of the deficits in abilities common in older people. The report begins by providing a background and rationale for an older driver vehicle, including discussions of relevant trends, age-related declines in functional abilities, and the adverse consequences of decreased mobility. The next section discusses research and issues related to vehicle design and advanced technology with respect to older drivers. The next section explores crashworthiness issues and the unique requirements for older adults. The following section discusses the many issues related to marketing a vehicle that has been designed for older drivers. The report concludes that there is a clear global opportunity to improve the safety, mobility, and quality of life of older adults by designing vehicles and vehicle technologies that help overcome common age-related deficits. The marketing of these vehicles to older consumers, however, will be challenging and will likely require further market research. The development of vehicle design features, new automotive technologies, and crashworthiness systems in the future should be guided by both knowledge of the effects of frailty/fragility of the elderly on crash outcomes, as well as knowledge of common drivingrelated declines in psychomotor, visual, and cognitive abilities. Design strategies that allow for some degree of customization may be particularly beneficial. It is clear that training and education efforts for using new vehicle features will need to be improved.The University of Michigan Sustainable Worldwide Transportationhttp://deepblue.lib.umich.edu/bitstream/2027.42/89960/1/102821.pd

    Sociology Between the Gaps Volume 3 (2017)

    Get PDF

    INTELLIGENTE TRANSPORT SYSTEMEN ITS EN VERKEERSVEILIGHEID

    Get PDF
    This report discusses Intelligent Transport Systems (ITS). This generic term is used for a broad range of information-, control- and electronic technology that can be integrated in the road infrastructure and the vehicles themselves, saving lives, time and money bymonitoring and managing traffic flows, reducing conges-tion, avoiding accidents, etc. Because this report was written in the scope of the Policy Research Centre Mobility & Public Works, track Traffic Safety, it focuses on ITS systems from the traffic safety point of view. Within the whole range of ITS systems, two categories can be distinguished: autonomous and cooperative systems. Autonomous systems are all forms of ITS which operate by itself, and do not depend on the cooperation with other vehicles or supporting infrastructure. Example applications are blind spot detection using radar, electronic stability control, dynamic traffic management using variable road signs, emergency call, etc. Cooperative systems are ITS systems based on communication and cooperation, both between vehicles as between vehicles and infrastructure. Example applications are alerting vehicles approaching a traffic jam, exchanging data regarding hazardous road conditions, extended electronic brake light, etc. In some cases, autonomous systems can evolve to autonomous cooperative systems. ISA (Intelligent Speed Adaptation) is an example of this: the dynamic aspect as well as communication with infrastructure (eg Traffic lights, Variable Message Sign (VMS)...) can provide additional road safety. This is the clear link between the two parts of this report. The many ITS applications are an indicator of the high expectations from the government, the academic world and the industry regarding the possibilities made possible by both categories of ITS systems. Therefore, the comprehensive discussion of both of them is the core of this report. The first part of the report covering the autonomous systems treats two aspects: 1. Overview of European projects related to mobility and in particular to road safety 2. Overview for guidelines for the evaluation of ITS projects. Out of the wide range of diverse (autonomous) ITS applications a selection is made; this selection is focused on E Safety Forum and PreVENT. Especially the PreVent research project is interesting because ITS-applications have led to a number of concrete demonstration vehicles that showed - in protected and unprotected surroundings- that these ITS-applications are already technically useful or could be developed into useful products. The component “guidelines for the evaluation of ITS projects” outlines that the government has to have specific evaluation tools if the government has the ambition of using ITS-applications for road safety. Two projects -guidelines for the evaluation of ITS projects- are examined; a third evaluation method is only mentioned because this description shows that a specific targeting of the government can be desirable : 1. TRACE describes the guidelines for the evaluation of ITS projects which are useful for the evaluation of specific ITS-applications. 2. FITS contains Finnish guidelines for the evaluation of ITS project; FIS is an adaptation of methods used for evaluation of transport projects. 3. The third evaluation method for the evaluation of ITS projects is developed in an ongoing European research project, eImpact. eImpact is important because, a specific consultation of stake holders shows that the social importance of some techniques is underestimated. These preliminary results show that an appropriate guiding role for the government could be important. In the second part of this document the cooperative systems are discussed in depth. These systems enable a large number of applications with an important social relevance, both on the level of the environment, mobility and traffic safety. Cooperative systems make it possible to warn drivers in time to avoid collisions (e.g. when approaching the tail of a traffic jam, or when a ghost driver is detected). Hazardous road conditions can be automatically communicated to other drivers (e.g. after the detection of black ice or an oil trail by the ESP). Navigation systems can receive detailed real-time up-dates about the current traffic situation and can take this into account when calculating their routes. When a traffic distortion occurs, traffic centers can immediately take action and can actively influence the way that the traffic will be diverted. Drivers can be notified well in advance about approaching emergency vehicles, and can be directed to yield way in a uniform manner. This is just a small selection from the large number of applications that are made possible because of cooperative ITS systems, but it is very obvious that these systems can make a significant positive contribution to traffic safety. In literature it is estimated that the decrease of accidents with injuries of fatalities will be between 20% and 50% . It is not suprising that ITS systems receive a lot of attention for the moment. On an international level, a number of standards are being established regarding this topic. The International Telecommunications Uniont (ITU), Institute for Electrical and Electronics Engineers (IEEE), International Organization for Standardization (ISO), Association of Radio Industries and Business (ARIB) and European committee for standardization (CEN) are currently defining standards that describe different aspects of ITS systems. One of the names that is mostly mentioned in literature is the ISO TC204/WG16 Communications Architecture for Land Mobile environment (CALM) standard. It describes a framework that enables transparent (both for the application and the user) continuous communication through different communication media. Besides the innumerable standardization activities, there is a great number of active research projects. On European level, the most important are the i2010 Intelligent Car Initiative, the eSafety Forum, and the COMeSafety, the CVIS, the SAFESPOT, the COOPERS and the SEVECOM project. The i2010 Intelligent Car Initiative is an European initiative with the goal to halve the number of traffic casualties by 2010. The eSafety Forum is an initiative of the European Commission, industry and other stakeholders and targets the acceleration of development and deployment of safety-related ITS systems. The COMeSafety project supports the eSafety Forum on the field of vehicle-to-vehicle and vehicle-to-infrastructure communication. In the CVIS project, attention is given to both technical and non-technical issues, with the main goal to develop the first free and open reference implementation of the CALM architecture. The SAFEST project investigates which data is important for safety applications, and with which algorithmsthis data can be extracted from vehicles and infrastructure. The COOPERS project mainly targets communication between vehicles and dedicated roadside infrastructure. Finally, the SEVECOM project researches security and privacy issues. Besides the European projects, research is also conducted in the United States of America (CICAS and VII projects) and in Japan (AHSRA, VICS, Smartway, internetITS). Besides standardization bodies and governmental organizations, also the industry has a considerable interest in ITS systems. In the scope of their ITS activities, a number of companies are united in national and international organizations. On an international level, the best known names are the Car 2 Car Communication Consortium, and Ertico. The C2C CC unites the large European car manufacturers, and focuses on the development of an open standard for vehicle-to-vehicle and vehicle-to-infrastructure communications based on the already well established IEEE 802.11 WLAN standard. Ertico is an European multi-sector, public/private partnership with the intended purpose of the development and introduction of ITS systems. On a national level, FlandersDrive and The Telematics Cluster / ITS Belgium are the best known organizations. Despite the worldwide activities regarding (cooperative) ITS systems, there still is no consensus about the wireless technology to be used in such systems. This can be put down to the fact that a large number of suitable technologies exist or are under development. Each technology has its specific advantages and disadvantages, but no single technology is the ideal solution for every ITS application. However, the different candidates can be classified in three distinct categories. The first group contains solutions for Dedicated Short Range Communication (DSRC), such as the WAVE technology. The second group is made up of several cellular communication networks providing coverage over wide areas. Examples are GPRS (data communication using the GSM network), UMTS (faster then GPRS), WiMAX (even faster then UMTS) and MBWA (similar to WiMAX). The third group consists of digital data broadcast technologies such as RDS (via the current FM radio transmissions, slow), DAB and DMB (via current digital radio transmissions, quicker) and DVB-H (via future digital television transmissions for mobiledevices, quickest). The previous makes it clear that ITS systems are a hot topic right now, and they receive a lot of attention from the academic world, the standardization bodies and the industry. Therefore, it seems like that it is just a matter of time before ITS systems will find their way into the daily live. Due to the large number of suitable technologies for the implementation of cooperative ITS systems, it is very hard to define which role the government has to play in these developments, and which are the next steps to take. These issues were addressed in reports produced by the i2010 Intelligent Car Initiative and the CVIS project. Their state of the art overview revealed that until now, no country has successfully deployed a fully operational ITS system yet. Seven EU countries are the furthest and are already in the deployment phase: Sweden, Germany, the Netherlands, the United Kingdom, Finland, Spain and France. These countries are trailed by eight countries which are in the promotion phase: Denmark, Greece, Italy, Austria, Belgium,Norway, the Czech Republic and Poland. Finally, the last ten countries find themselves in the start-up phase: Estonia, Lithuania, Latvia, Slovenia, Slovakia, Hungary, Portugal, Switzerland, Ireland and Luxembourg. These European reports produced by the i2010 Intelligent Car Initiative and the CVIS project have defined a few policy recommendations which are very relevant for the Belgian and Flemish government. The most important recommendations for the Flemish government are: • Support awareness: research revealed that civilians consider ITS applications useful, but they are not really willing to pay for this technology. Therefore, it is important to convince the general public of the usefulness and the importance of ITS systems. • Fill the gaps: Belgium is situated in the promotion phase. This means that it should focus at identifying the missing stakeholders, and coordinating national and regional ITS activities. Here it is important that the research activities are coordinated in a national and international context to allow transfer of knowledge from one study to the next, as well as the results to be comparable. • Develop a vision: in the scope of ITS systems policies have to be defined regarding a large number of issues. For instance there is the question if ITS users should be educated, meaning that the use of ITS systems should be the subject of the drivers license exam. How will the regulations be for the technical inspection of vehicles equipped with ITS technology? Will ITS systems be deployed on a voluntary base, or will they e.g. be obliged in every new car? Will the services be offered by private companies, by the public authorities, or by a combination of them? Which technology will be used to implement ITS systems? These are just a few of the many questions where the government will have to develop a point of view for. • Policy coordination: ITS systems are a policy subject on an international, national and regional level. It is very important that these policy organizations can collaborate in a coordinated manner. • Iterative approach to policy development: developing policies for this complex matter is not a simple task. This asks for an iterative approach, where policy decisions are continuously refined and adjusted

    Zero Emission Vessels transition pathways

    Get PDF
    The reports seeks to understand the milestones and enablers over the required timeframe to create the necessary conditions for the evolution of different pathways towards decarbonisation. It considers how cost, operating profile and policy measures could influence this and identifies milestones over time with regards to the safety, technical, social, economic and environmental aspects of the potential zero-emission vessels (ZEVs) and the associated supply of the zero-carbon fuel options

    Ecodriving and Carbon Footprinting: Understanding How Public Education Can Reduce Greenhouse Gas Emissions and Fuel Use

    Get PDF
    Ecodriving is a collection of changes to driving behavior and vehicle maintenance designed to impact fuel consumption and greenhouse gas (GHG) emissions in existing vehicles. Because of its promise to improve fuel economy within the existing fleet, ecodriving has gained increased attention in North America. One strategy to improve ecodriving is through public education with information on how to ecodrive. This report provides a review and study of ecodriving from several angles. The report offers a literature review of previous work and programs in ecodriving across the world. In addition, researchers completed interviews with experts in the field of public relations and public message campaigns to ascertain best practices for public campaigns. Further, the study also completed a set of focus groups evaluating consumer response to a series of websites that displayed ecodriving information. Finally, researchers conducted a set of surveys, including a controlled stated-response study conducted with approximately 100 University of California, Berkeley faculty, staff, and students, assessing the effectiveness of static ecodriving web-based information as well as an intercept clipboard survey in the San Francisco Bay Area. The stated-response study consisted of a comparison of the experimental and control groups. It found that exposure to ecodriving information influenced people’s driving behavior and some maintenance practices. The experimental group’s distributional shift was statistically significant, particularly for key practices including: lower highway cruising speed, driving behavior adjustment, and proper tire inflation. Within the experimental group (N = 51), fewer respondents significantly changed their maintenance practices (16%) than the majority that altered some driving practices (71%). This suggests intentionally altering driving behavior is easier than planning better maintenance practices. While it was evident that not everyone modifies their behavior as a result of reviewing the ecodriving website, even small shifts in behavior due to inexpensive information dissemination could be deemed cost effective in reducing fuel consumption and emissions

    Role of Regulators in Safeguarding the Interface Between Autonomous Systems and the General Public

    Get PDF
    Regulators play a critical role in the commercial exploitation of new technologies. They protect the public when market competition might persuade companies to take undue risks. At the same time, it is essential that regulatory authorities do not kill innovation by imposing inappropriate rules or by retaining previous requirements that make little sense in the light of technical innovations. These tensions are apparent in the introduction of autonomous and semi-autonomous systems, across a range of industries. “Regulatory lag” has starved companies of the strategic guidance that is necessary to make informed decisions about acceptable levels of safety and security for the integration of these technologies. This paper argues that existing product-based, process-based and performance-based approaches to regulation threaten the safe and secure exploitation of new markets. In contrast, we advocate a competent, anticipatory, self-reflective approach, which places performance requirements on the regulator rather than on the markets they protect
    • …
    corecore