10,030 research outputs found

    Maximizing Activity in Ising Networks via the TAP Approximation

    Full text link
    A wide array of complex biological, social, and physical systems have recently been shown to be quantitatively described by Ising models, which lie at the intersection of statistical physics and machine learning. Here, we study the fundamental question of how to optimize the state of a networked Ising system given a budget of external influence. In the continuous setting where one can tune the influence applied to each node, we propose a series of approximate gradient ascent algorithms based on the Plefka expansion, which generalizes the na\"{i}ve mean field and TAP approximations. In the discrete setting where one chooses a small set of influential nodes, the problem is equivalent to the famous influence maximization problem in social networks with an additional stochastic noise term. In this case, we provide sufficient conditions for when the objective is submodular, allowing a greedy algorithm to achieve an approximation ratio of 11/e1-1/e. Additionally, we compare the Ising-based algorithms with traditional influence maximization algorithms, demonstrating the practical importance of accurately modeling stochastic fluctuations in the system

    Hierarchical relational models for document networks

    Full text link
    We develop the relational topic model (RTM), a hierarchical model of both network structure and node attributes. We focus on document networks, where the attributes of each document are its words, that is, discrete observations taken from a fixed vocabulary. For each pair of documents, the RTM models their link as a binary random variable that is conditioned on their contents. The model can be used to summarize a network of documents, predict links between them, and predict words within them. We derive efficient inference and estimation algorithms based on variational methods that take advantage of sparsity and scale with the number of links. We evaluate the predictive performance of the RTM for large networks of scientific abstracts, web documents, and geographically tagged news.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS309 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure
    corecore