1,531 research outputs found

    Lymphoma caused by intestinal microbiota.

    Get PDF
    The intestinal microbiota and gut immune system must constantly communicate to maintain a balance between tolerance and activation: on the one hand, our immune system should protect us from pathogenic microbes and on the other hand, most of the millions of microbes in and on our body are innocuous symbionts and some can even be beneficial. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not surprising that some lymphomas such as mucosal-associated lymphoid tissue (MALT) lymphoma have been shown to be caused by the presence of certain bacteria. Animal models played an important role in establishing causation and mechanism of bacteria-induced MALT lymphoma. In this review we discuss different ways that animal models have been applied to establish a link between the gut microbiota and lymphoma and how animal models have helped to elucidate mechanisms of microbiota-induced lymphoma. While there are not a plethora of studies demonstrating a connection between microbiota and lymphoma development, we believe that animal models are a system which can be exploited in the future to enhance our understanding of causation and improve prognosis and treatment of lymphoma

    Poly (ADP-ribose) polymerase-1 is a key mediator of liver inflammation and fibrosis.

    Get PDF
    Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential

    Systemic Regulators of Skeletal Muscle Regeneration in Obesity

    Get PDF
    Skeletal muscle maintenance is a dynamic process and undergoes constant repair and regeneration. However, skeletal muscle regenerative capacity declines in obesity. In this review, we focus on obesity-associated changes in inflammation, metabolism, and impaired insulin signaling, which are pathologically dysregulated and ultimately result in a loss of muscle mass and function. In addition, we examine the relationships between skeletal muscle, liver, and visceral adipose tissue in an obese state

    Microparticles and vascular dysfunction in obstructive sleep apnoea

    Get PDF
    Obstructive sleep apnoea (OSA) is independently associated with various cardiovascular diseases, including myocardial infarction and stroke. OSA may promote atherosclerosis risk factors such as hypertension, diabetes and dyslipidaemia, and may have direct proatherogenic effects on the vascular wall. A growing number of studies have recently focused on the role of microparticles (MPs) in the atherogenic process. MPs are small plasma membrane vesicles that can be released by a variety of vascular or blood cells, and contain both membrane and cytosolic elements. Case–control studies have shown that platelet-, endothelium- and leukocyte-derived MP levels are increased in OSA. Experimental evidence has demonstrated that MPs from OSA patients induce endothelial dysfunction, inflammation and vascular hyperreactivity when injected into mice. In this review, we provide an overview of the main characteristics of MPs, their expression in OSA and their potential role in the atherogenic process associated with OSA

    Mitochondrial DNA damage and atherosclerosis.

    Get PDF
    Mitochondria are often regarded as the cellular powerhouses through their ability to generate ATP, the universal fuel for metabolic processes. However, in recent years mitochondria have been recognised as critical regulators of cell death, inflammation, metabolism, and the generation of reactive oxygen species (ROS). Thus, mitochondrial dysfunction directly promotes cell death, inflammation, and oxidative stress and alters metabolism. These are key processes in atherosclerosis and there is now evidence that mitochondrial DNA (mtDNA) damage leads to mitochondrial dysfunction and promotes atherosclerosis directly. In this review we discuss the recent evidence for and mechanisms linking mtDNA defects and atherosclerosis and suggest areas of mitochondrial biology that are potential therapeutic targets.NoneThis is the Author Accepted Manuscript of the article "Mitochondrial DNA damage and atherosclerosis" published in Trends in Endocrinology and Metabolism on September 2104. This version is embargoed until September 2015 in line with publisher requirements. The published version of record is available on the journal website at http://dx.doi.org/10.1016/j.tem.2014.06.00

    Traumatic Brain Injury Induces Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting Neurological Disorders.

    Get PDF
    The complexity of the traumatic brain injury (TBI) pathology, particularly concussive injury, is a serious obstacle for diagnosis, treatment, and long-term prognosis. Here we utilize modern systems biology in a rodent model of concussive injury to gain a thorough view of the impact of TBI on fundamental aspects of gene regulation, which have the potential to drive or alter the course of the TBI pathology. TBI perturbed epigenomic programming, transcriptional activities (expression level and alternative splicing), and the organization of genes in networks centered around genes such as Anax2, Ogn, and Fmod. Transcriptomic signatures in the hippocampus are involved in neuronal signaling, metabolism, inflammation, and blood function, and they overlap with those in leukocytes from peripheral blood. The homology between genomic signatures from blood and brain elicited by TBI provides proof of concept information for development of biomarkers of TBI based on composite genomic patterns. By intersecting with human genome-wide association studies, many TBI signature genes and network regulators identified in our rodent model were causally associated with brain disorders with relevant link to TBI. The overall results show that concussive brain injury reprograms genes which could lead to predisposition to neurological and psychiatric disorders, and that genomic information from peripheral leukocytes has the potential to predict TBI pathogenesis in the brain

    Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease

    Get PDF
    The past decade has resulted in multiple new findings of potential proteomic biomarkers of diabetic kidney disease (DKD). Many of these biomarkers reflect an important role in the (patho)physiology and biological processes of DKD. Situations in which proteomics could be applied in clinical practice include the identification of individuals at risk of progressive kidney disease and those who would respond well to treatment, in order to tailor therapy for those at highest risk. However, while many proteomic biomarkers have been discovered, and even found to be predictive, most lack rigorous external validation in sufficiently powered studies with renal endpoints. Moreover, studies assessing short-term changes in the proteome for therapy-monitoring purposes are lacking. Collaborations between academia and industry and enhanced interactions with regulatory agencies are needed to design new, sufficiently powered studies to implement proteomics in clinical practice

    Relación entre obesidad, adipocitoquinas y osteoatrosis: Una revisión

    Get PDF
    Introduction: Some adipocytokines expressed by osteoblasts, chondrocytes and synoviocytes are responsible of the inflammation and degradation of the extracellular matrix in the joints, which generates osteoarthritis. Objective: To review the current state of knowledge around the relationship between obesity, adipocytokines and osteoarthritis. Materials and methods: An electronic search was carried out in the databases of BBCS-LILACS, PubMed, IB-PsycINFO, IB-SSCI, IB-SciELO, Scopus and Science Direct in English and Spanish, without limiting the search by date. Clinical trials, meta-analyses, reviews, case reports and classic articles related to obesity and its implications were included as well as osteoarthritis, adipocytokines, adipose tissue and joint inflammation. Results: 822 articles were found; however, 78 documents met the selection criteria for the relevance of the information. This work was divided into three sections: Osteoarthritis and obesity, osteoarthritis and inflammation and osteoarthritis and adipocytokines. Conclusion: Nowadays, obesity is associated with the development of osteoarthritis, as it triggers a series of inflammatory processes mediated by the adipocytokines. Several studies recommend the development of clinical research to understand the behavior of adipocytokines before and during the development of osteoarthritis

    Heme oxygenase 1 is differentially involved in blood flow-dependent arterial remodeling: role of inflammation, oxidative stress, and nitric oxide

    Get PDF
    Heme oxygenase 1 is induced by hemodynamic forces in vascular smooth muscle and endothelial cells. We investigated the involvement of heme oxygenase 1 in flow (shear stress)-dependent remodeling. Two or 14 days after ligation of mesenteric resistance arteries, vessels were isolated. In rats, at 14 days, diameter increased by 23% in high-flow arteries and decreased by 22% in low-flow arteries compared with normal flow vessels. Heme oxygenase activity inhibition using Tin-protoporphyrin abolished diameter enlargement in high-flow arteries and accentuated arterial narrowing in low-flow arteries (32% diameter decrease versus 22% in control). Two days after ligation, heme oxygenase 1 expression increased in high-flow and low-flow vessels, in association with a reduced mitochondrial aconitase activity (marker of oxidative stress) in high-flow arteries only. Inhibition of macrophage infiltration (clodronate) decreased heme oxygenase 1 induction in low-flow but not in high-flow arteries. Similarly, inhibition of NADPH oxidase activity (apocynin) decreased heme oxygenase 1 induction in low-flow but not high-flow arteries. However, dihydroethidium staining was higher in high-flow and low-flow compared with normal flow arteries. In arteries cannulated in an arteriograph, heme oxygenase 1 mRNA increased in a flow-dependent manner and was abolished by N(G)-nitro-l-arginine methyl ester, catalase, or mitochondrial electron transport chain inhibition. Furthermore, heme oxygenase 1 induction using cobalt-protoporphyrin restored altered high-flow remodeling in endothelial NO synthase knockout mice. Thus, in high-flow remodeling, heme oxygenase 1 induction depends on shear stress-generated NO and mitochondria-derived hydrogen peroxide. In low-flow remodeling, heme oxygenase 1 induction requires macrophage infiltration and is mediated by NADPH oxidase-derived superoxide
    corecore