43,157 research outputs found

    Static Safety for an Actor Dedicated Process Calculus by Abstract Interpretation

    Get PDF
    The actor model eases the definition of concurrent programs with non uniform behaviors. Static analysis of such a model was previously done in a data-flow oriented way, with type systems. This approach was based on constraint set resolution and was not able to deal with precise properties for communications of behaviors. We present here a new approach, control-flow oriented, based on the abstract interpretation framework, able to deal with communication of behaviors. Within our new analyses, we are able to verify most of the previous properties we observed as well as new ones, principally based on occurrence counting

    dotCall64: An Efficient Interface to Compiled C/C++ and Fortran Code Supporting Long Vectors

    Full text link
    The R functions .C() and .Fortran() can be used to call compiled C/C++ and Fortran code from R. This so-called foreign function interface is convenient, since it does not require any interactions with the C API of R. However, it does not support long vectors (i.e., vectors of more than 2^31 elements). To overcome this limitation, the R package dotCall64 provides .C64(), which can be used to call compiled C/C++ and Fortran functions. It transparently supports long vectors and does the necessary castings to pass numeric R vectors to 64-bit integer arguments of the compiled code. Moreover, .C64() features a mechanism to avoid unnecessary copies of function arguments, making it efficient in terms of speed and memory usage.Comment: 17 page

    Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces

    Full text link
    At the heart of the structured architecture and complex dynamics of biological systems are specific and timely interactions operated by biomolecules. In many instances, biomolecular agents are spatially confined to flexible lipid membranes where, among other functions, they control cell adhesion, motility and tissue formation. Besides being central to several biological processes, \emph{multivalent interactions} mediated by reactive linkers confined to deformable substrates underpin the design of synthetic-biological platforms and advanced biomimetic materials. Here we review recent advances on the experimental study and theoretical modelling of a heterogeneous class of biomimetic systems in which synthetic linkers mediate multivalent interactions between fluid and deformable colloidal units, including lipid vesicles and emulsion droplets. Linkers are often prepared from synthetic DNA nanostructures, enabling full programmability of the thermodynamic and kinetic properties of their mutual interactions. The coupling of the statistical effects of multivalent interactions with substrate fluidity and deformability gives rise to a rich emerging phenomenology that, in the context of self-assembled soft materials, has been shown to produce exotic phase behaviour, stimuli-responsiveness, and kinetic programmability of the self-assembly process. Applications to (synthetic) biology will also be reviewed.Comment: 63 pages, revie
    • …
    corecore