21,127 research outputs found

    Classical Disordered Ground States: Super-Ideal Gases, and Stealth and Equi-Luminous Materials

    Full text link
    Using a collective coordinate numerical optimization procedure, we construct ground-state configurations of interacting particle systems in various space dimensions so that the scattering of radiation exactly matches a prescribed pattern for a set of wave vectors. We show that the constructed ground states are, counterintuitively, disordered (i.e., possess no long-range order) in the infinite-volume limit. We focus on three classes of configurations with unique radiation scattering characteristics: (i)``stealth'' materials, which are transparent to incident radiation at certain wavelengths; (ii)``super-ideal'' gases, which scatter radiation identically to that of an ensemble of ideal gas configurations for a selected set of wave vectors; and (iii)``equi-luminous'' materials, which scatter radiation equally intensely for a selected set of wave vectors. We find that ground-state configurations have an increased tendency to contain clusters of particles as one increases the prescribed luminosity. Limitations and consequences of this procedure are detailed.Comment: 44 pages, 16 figures, revtek

    Clustering and coalescence from multiplicative noise: the Kraichnan ensemble

    Full text link
    We study the dynamics of the two-point statistics of the Kraichnan ensemble which describes the transport of a passive pollutant by a stochastic turbulent flow characterized by scale invariant structure functions. The fundamental equation of this problem consists in the Fokker-Planck equation for the two-point correlation function of the density of particles performing spatially correlated Brownian motions with scale invariant correlations. This problem is equivalent to the stochastic motion of an effective particle driven by a generic multiplicative noise. In this paper we propose an alternative and more intuitive approach to the problem than the original one leading to the same conclusions. The general features of this new approach make possible to fit it to other more complex contexts.Comment: IOP-LaTeX, 17 pages J. Phys. A: Theor. Mat. 2008 in pres

    Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations

    Full text link
    Systems of particles interacting with "stealthy" pair potentials have been shown to possess infinitely degenerate disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide details and justifications of the simulation procedure, which involves performing molecular dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our study to the lower-density regime. We report results for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground states behave like "pseudo" disordered equilibrium hard-sphere systems in Fourier space. These results show that as the density decreases from the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states. We also provide numerical evidence suggesting that different forms of stealthy pair potentials produce the same ground-state ensemble in the zero-temperature limit. Our techniques may be applied to sample this limit of the canonical ensemble of other potentials with highly degenerate ground states

    Bayesian learning of joint distributions of objects

    Full text link
    There is increasing interest in broad application areas in defining flexible joint models for data having a variety of measurement scales, while also allowing data of complex types, such as functions, images and documents. We consider a general framework for nonparametric Bayes joint modeling through mixture models that incorporate dependence across data types through a joint mixing measure. The mixing measure is assigned a novel infinite tensor factorization (ITF) prior that allows flexible dependence in cluster allocation across data types. The ITF prior is formulated as a tensor product of stick-breaking processes. Focusing on a convenient special case corresponding to a Parafac factorization, we provide basic theory justifying the flexibility of the proposed prior and resulting asymptotic properties. Focusing on ITF mixtures of product kernels, we develop a new Gibbs sampling algorithm for routine implementation relying on slice sampling. The methods are compared with alternative joint mixture models based on Dirichlet processes and related approaches through simulations and real data applications.Comment: Appearing in Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale, AZ, US
    • …
    corecore