152 research outputs found

    Infinite Hamiltonian paths in Cayley diagraphs of hyperbolic symmetry groups

    Get PDF
    AbstractThe hyperbolic symmetry groups [p,q], [p,q]+, and [p+, q] have certain natural generating sets. We determine whether or not the corresponding Cayley digraphs have one-way infinite or two-way infinite directed Hamiltonian paths. In addition, the analogous Cayley graphs are shown to have both one-way infinite and two-way infinite Hamiltonian paths

    On Hamilton decompositions of infinite circulant graphs

    Get PDF
    The natural infinite analogue of a (finite) Hamilton cycle is a two-way-infinite Hamilton path (connected spanning 2-valent subgraph). Although it is known that every connected 2k-valent infinite circulant graph has a two-way-infinite Hamilton path, there exist many such graphs that do not have a decomposition into k edge-disjoint two-way-infinite Hamilton paths. This contrasts with the finite case where it is conjectured that every 2k-valent connected circulant graph has a decomposition into k edge-disjoint Hamilton cycles. We settle the problem of decomposing 2k-valent infinite circulant graphs into k edge-disjoint two-way-infinite Hamilton paths for k=2, in many cases when k=3, and in many other cases including where the connection set is ±{1,2,...,k} or ±{1,2,...,k - 1, 1,2,...,k + 1}

    On Cayley digraphs that do not have hamiltonian paths

    Full text link
    We construct an infinite family of connected, 2-generated Cayley digraphs Cay(G;a,b) that do not have hamiltonian paths, such that the orders of the generators a and b are arbitrarily large. We also prove that if G is any finite group with |[G,G]| < 4, then every connected Cayley digraph on G has a hamiltonian path (but the conclusion does not always hold when |[G,G]| = 4 or 5).Comment: 10 pages, plus 14-page appendix of notes to aid the refere

    Hamiltonian cycles in Cayley graphs of imprimitive complex reflection groups

    Full text link
    Generalizing a result of Conway, Sloane, and Wilkes for real reflection groups, we show the Cayley graph of an imprimitive complex reflection group with respect to standard generating reflections has a Hamiltonian cycle. This is consistent with the long-standing conjecture that for every finite group, G, and every set of generators, S, of G the undirected Cayley graph of G with respect to S has a Hamiltonian cycle.Comment: 15 pages, 4 figures; minor revisions according to referee comments, to appear in Discrete Mathematic

    Recent trends and future directions in vertex-transitive graphs

    Get PDF
    A graph is said to be vertex-transitive if its automorphism group acts transitively on the vertex set. Some recent developments and possible future directions regarding two famous open problems, asking about existence of Hamilton paths and existence of semiregular automorphisms in vertex-transitive graphs, are discussed, together with some recent results on arc-transitive graphs and half-arc-transitive graphs, two special classes of vertex-transitive graphs that have received particular attention over the last decade
    corecore