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Abstract

A graph is said to be vertex-transitive if its automorphism group acts transitively on the
vertex set. Some recent developments and possible future directions regarding two famous
open problems, asking about existence of Hamilton paths and existence of semiregular au-
tomorphisms in vertex-transitive graphs, are discussed, together with some recent results on
arc-transitive graphs and half-arc-transitive graphs, two special classes of vertex-transitive
graphs that have received particular attention over the last decade.
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1 In the beginning
Vertex-transitive graphs, that is, graphs whose automorphisms groups acts transitively

on the corresponding vertex sets, have been an active topic of research for a long time now.
Much of this interest is due to their suitability to model scientific phenomena when symmetry
is an issue. It is the aim of this article to discuss recent developments surrounding two well
known open problems in vertex-transitive graphs – the Hamilton path/cycle problem and
the semiregularity problem – as well as the general question addressing structural properties
of arc-transitive and half-arc-transitive graphs. In doing so we will also try to contemplate
possible directions this area of research is likely to take in the near future.
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The article is organized as follows. In Section 2 we discuss the problem, posed by the sec-
ond author in 1981 (see [79]) who asked if it is true that a vertex-transitive digraph contains
a nonidentity automorphism with all orbits of equal length, in short, a semiregular automor-
phism. Section 3 gives a quick overview of the problem, posed by Lovàsz in 1969 (see [72]),
who asked if it is true that every connected vertex-transitive graph contains a Hamilton path,
thus motivating a great deal of research into vertex-transitive graphs in the following decades.
In Section 4, imprimitivity, one of the most fundamental concepts in the theory of permuta-
tion groups, is considered with special emphasis given to a recently developed theory which
links the existence of blocks of imprimitivity in vertex-transitive graphs, having an abelian
semiregular subgroup of automorphisms, to certain conditions that need to be satisfied in the
corresponding quotient graph relative to the orbits of such a subgroup. Finally, in Section 5
we deal with some recent structural results on arc-transitive and half-arc-transitive graphs, as
well as their link to some open problems in the theory of configurations.

For group-theoretic terms not defined here we refer the reader to [124].

2 Semiregularity

Let G be a permutation group on a finite set V . A non-identity element of G is semireg-
ular, more precisely (m,n) - semiregular, if it has m orbits of size n. It is known that each
finite transitive permutation group contains a fixed-point-free element of prime power order
[43, Theorem 1], but not necessarily a fixed-point-free element of prime order and, hence,
no semiregular element. A permutation group with no semiregular elements is sometimes
called elusive (see [25]). The name is intended to suggest that such groups appear to be quite
rare. Indeed, a first construction of elusive groups (associated with Mersenne primes) was
described in [43]. More recently, infinite families of such groups were given in [25, 49, 50].

One would expect “nice” combinatorial objects, for example graphs, to have non-elusive
automorphism groups. Indeed, the problem first arose in a graph-theoretic context in 1981
when it was asked if every vertex-transitive digraph has a semiregular automorphism [79,
Problem 2.4]. There has recently been an increased interest in this problem, now know as
the semiregularity problem, measured, among others, by a number of articles, manuscripts
and other forms of written material. Mostly, these articles make small, but important, steps
towards a possible final answer to the problem. In short, the problem is still open.

The now commonly accepted, and slightly more general, version of the semiregularity
problem involves the whole class of 2-closed transitive groups [24, 62]. Following [125],
the 2-closure G(2) of a permutation group G is the largest subgroup of the symmetric group
SV having the same orbits on V × V as G; alternatively, G(2) is the intersection of the
automorphism groups of all orbital digraphs associated with the action of G on V . The group
G is said to be 2-closed if it coincides with G(2). We remark that the 2-closures of all elusive
groups mentioned in [25, 49, 50] are non-elusive, thus supporting the above conjecture.

Three lines of approach to the semiregularity problem may be identified: the order of a
graph, the valency of a graph, and special types of action of the group. For instance, if p is
a prime then transitive permutation groups of degree pk, k ≥ 1, or mp, with m ≤ p, contain
semiregular elements [79]. Also, the automorphism groups of vertex-transitive digraphs on
2p2 vertices, and by the most recent result, 2-closed groups of square-free degree are known
to contain semiregular elements [38, 97]. Further, cubic and quartic vertex-transitive graphs
have semiregular automorphisms [39, 97]. Perhaps the most important work on the subject
is due to Giudici [49] who proved that, with the exception of a certain family of groups as-
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sociated with M11, all quasiprimitive permutation groups contain semiregular elements, and
even those which do not, have 2-closures which do. (A permutation group is quasiprimi-
tive if every non-trivial normal subgroup is transitive.) Very recently, Giudici and Xu [51]
extended these results by combining valency and type of action approaches to classify all
biquasiprimitive groups without semiregular elements, and to prove the existence of semireg-
ular automorphisms in vertex-transitive graphs whose vertex stabilizers act quasiprimitively
on the corresponding sets of neighbors. (A biquasiprimitive permutation group is a transi-
tive permutation group for which every nontrivial normal subgroup has at most two orbits and
there is some normal subgroup with precisely two orbits.) As an important consequence, for
example, arc-transitive graphs with prime valency, and 2-arc-transitive graphs have semireg-
ular automorphisms. Further, Xu [128] has shown the existence of desired automorphisms
whenever the graph is arc-transitive of valency a product of two primes as long as its auto-
morphism group has a nonabelian minimal normal subgroup with at least three orbits on the
vertex set.

These results, chipping away the nonsolvable side of the equation, suggest an inevitable
shift of emphasis to solvable groups is needed, if one is to hope for a solution of the prob-
lem. Namely, in view of the above results on quasiprimitive and biquasiprimitive groups, one
may restrict oneself to transitive 2-closed groups which have a “genuine” imprimitivity block
system arising from an intransitive normal subgroup with at least three orbits. This allows a
normal subgroup reduction to a smaller quotient graph which admits a vertex-transitive action
of the quotient group. This would, at least in principle, set the stage for an induction type of
argument (see Proposition 3). It seems reasonable to start out the research in the genuinely
imprimitive case by first considering solvable groups, where the normal subgroup reduction
has obvious specific advantages. In fact in this special case of the semiregularity problem
for solvable groups we may always assume that there exists an genuine imprimitivity block
system. Namely, let G be a transitive solvable group and let N = Zm

p be the minimal ele-
mentary abelian normal subgroup of G. If N is transitive then all of its nontrivial elements
are semiregular. If, on the other hand, N has two orbits, say O1 and O2 then, by [38, Propo-
sition 3.1], either the restriction of every element of order p is semiregular on both O1 and
O2, or there exist an element which has prime order on O1 and is the identity on O2, and
an element which has prime order on O2 and is the identity on O1. But then the product of
these two elements is semiregular. We therefore pose the following two problems, the second
being a special case of the first one.

Problem 1. Does a vertex-transitive graph with genuinely imprimitve automorphism group
contain a semiregular element?

Problem 2. Does a vertex-transitive graph with solvable automorphism group contain a
semiregular element?

The above mentioned normal subgroup reduction approach gives an affirmative answer
in the special case of Problem 2 where the graphs in questions admit a transitive group of
automorphisms all of whose Sylow subgroups are cyclic.

Proposition 3. Let X be a vertex-transitive graph such that all Sylow subgroups of its auto-
morphism group AutX are cyclic. Then X has a semiregular automorphism.

Proof. The classical result of Burnside [23] says that a group H with a cyclic Sylow p-
subgroup P , where p is the smallest prime divisor of |H|, is a product of the form KP ,
where K is a normal subgroup (of order prime to p).
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Let now G ≤ AutX be an arbitrary transitive subgroup and let p be the smallest prime
divisor of |G|. Then, by the above result of Burnside we have that G = PK where K is a
normal subgroup in G of order prime to p. If K acts intransitively on X then the quotient
groupG/K acts transitively on the quotient graphXK relative to the orbits ofK. (The vertex
set ofXK coincides with the set of orbits ofK with the edge set induced naturally by the edge
set of X .) Since G/K is isomorphic to a Sylow p-subgroup P , by standard orbit-stabilizer
property, the quotient graph XK is of prime power order pi, for some i ∈ N, and hence, as
mentioned in one of the preceding paragraphs, by [79], G/K contains a semiregular element
α of order p. Since |K| is of order coprime to p it follows that the lift ofα inG is a semiregular
automorphism ofX . If howeverK acts transitively onX , then take the smallest prime divisor
of |K| and repeat the argument. Either along this process the existence of a semiregular
automorphism is assured or a Sylow q-subgroup Q, where q is the biggest prime dividing |G|
acts transitively on X , and hence X clearly has a semiregular automorphism.

3 Hamilton paths and cycles

The solution of the semiregularity problem would certainly contribute significantly to var-
ious open problems regarding vertex-transitive graphs. One of such problems is the problem
of existence of Hamilton paths/cycles (that is, a simple paths/cycles going through all ver-
tices) in finite connected vertex-transitive graphs. In particular, in 1969 Lovász [72] asked
whether every finite connected vertex-transitive graph has a Hamilton path. All known con-
nected vertex-transitive graphs have a Hamilton path and with the exception of K2, only four
connected vertex-transitive graphs that do not have a Hamilton cycle are known to exist: the
Petersen graph, the Coxeter graph and the two graphs obtained from them by replacing each
vertex by a triangle. The fact that none of these four graphs is a Cayley graph, that is, a vertex-
transitive graph with a regular subgroup of automorphisms, has led to a folklore conjecture
that every connected Cayley graph has a Hamilton cycle.

This problem, together with its Cayley graph variation, produced conjectures and counter-
conjectures with regards to its truthfulness. For example, Thomassen’s conjecture [15, 122]
says that only finitely many connected vertex-transitive graphs without a Hamilton cycle ex-
ist, whereas Babai’s conjecture [12, 13] says that infinitely many such graphs exist. A large
number of articles directly or indirectly related to this problem (for the list of relevant refer-
ences and a detailed description of the status of this problem see [67]), have appeared in the
literature, affirming the existence of such paths in some special vertex-transitive graph and, in
some cases, also the existence of Hamilton cycles. It is known that connected vertex-transitive
graphs of order kp, where k ≤ 4, and pj , where j ≤ 4, and 2p2, where p is a prime, (except for
the Petersen graph and the Coxeter graph) contain a Hamilton cycle, whereas for connected
vertex-transitive graphs of order 5p and 6p it is known that they contain Hamilton paths (see
[1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 26, 65, 68, 81, 82, 83, 89, 90, 119]). Particular attention has been
given to Cayley graphs. For example, one may easily see that connected Cayley graphs of
abelian groups have a Hamilton cycle. Further, following [42, 61, 80] it is now known, that
with the exception of the Petersen graph every connected vertex-transitive graph whose auto-
morphism group contain a transitive subgroup with the cyclic commutator subgroup of prime
power order, has a Hamilton cycle [37]. Of many positive results for Cayley graphs arising
from particular generating sets it is worth mentioning the most recent result of this kind. It
was recently shown in [52], innovatively combining algebraical and topological tools, that
cubic Cayley graphs arising from finite groups G = 〈a, x | a2 = 1, xs = 1, (ax)3 = 1, . . .〉
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having a (2, s, 3)-presentation contain a Hamilton cycle when |G| is congruent to 2 modulo
4, and contain a Hamilton path when |G| is congruent to 0 modulo 4.

A frequently used approach to constructing Hamilton cycles in vertex-transitive graphs is
based on a quotienting with respect to a suitable semiregular automorphism or with respect
to an imprimitivity block system of the corresponding automorphism group. If the quotient
graph contains a Hamilton cycle then it is sometimes possible to lift this cycle – spiraling
through the corresponding blocks/orbits – to a Hamilton cycle in the original graph. It can be
easily seen that such lifts of Hamilton cycles from quotient graphs are always possible, for
example, when the quotienting is done relative to a semiregular automorphism of prime order
and where in the quotient graph there are at least two adjacent orbits joined by a double
edge. This suggests that the question that should be addressed in the context of lifts of
Hamilton cycles concerns the case when any two adjacent orbits in the quotient graph are
joined by a single edge. In other words, when is a covering graph of a vertex-transitive graph
containing a Hamilton cycle also hamiltonian? For example, it is fairly easy to see that the
remarkable result of Witte about Hamilton cycles in Cayley (di)graphs of p-groups [127]
could be successfully generalized to arbitrary vertex-transitive graphs of prime power order
– which is in our opinion perhaps the most important next step needed to be taken if one is
to obtain a complete solution to the Hamilton path/cycle problem – provided one could prove
that for a prime p, a connected regular Zp-cover of a hamiltonian vertex-transitive graph of
order a power of p, is hamiltonian.

4 Imprimitivity

A permutation group G, acting transitively on a set X , is imprimitive if there exists a
nontrivial equivalence relation R on X with its equivalence classes invariant under the action
of G. Such a relation is called G-invariant and its equivalence classes are called blocks
of imprimitivity. For example, G is imprimitive whenever it contains a nontrivial intransitive
normal subgroup, since the orbits of a normal subgroup are alwaysG-invariant. As mentioned
in Section 2, imprimitive actions where no nontrivialG-invariant relation arises in such a way
are called quasiprimitive. A transitive permutation group is primitive if it is not imprimitive.

Imprimitivity is one of the most fundamental concepts in the theory of permutation groups,
primarily because the action of G on X may be recaptured, at least to some extent, from the
induced transitive action of G on a smaller quotient set X/R. By repeating this process we
eventually end up with primitive actions. To take advantage of this idea, one needs an appro-
priate description of a large enough class of invariant relations in question. A class of actions
where this approach proves to be promising is the case whenG contains a semiregular abelian
subgroup H . (We note that asking for G to contain such a subgroup is not that restrictive, in
view of the conjecture given in Section 2.) In this case, all G-invariant relations admit a rea-
sonably simple description in terms of orbits of certain subgroups of H . In particular, there
is an interesting subclass of relations obtained as follows. Let X be an auxiliary digraph with
the vertex set V which admits G as a group of automorphisms, let W be an eigenspace of X ,
and let N be the kernel of the linear representation of G on W . Then we define R to be the
G-invariant equivalence relation arising from the orbits of N . Recent work on this subject
[64] has shown that relations arising in such a way admit a particularly detailed description.
Future directions in the study of imprimitivity block systems are likely to use this approach.

As mentioned in [64], in a graph-theoretic setting, problems of this kind are motivated by
the following situation, often encountered when dealing with questions regarding symmetry
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of graphs. Given a graph X admitting a cyclic subgroup with two orbits of equal size, there
are two essentially different possibilities forcing such a graph to be vertex-transitive. Either
there exists an automorphism swapping setwise the two orbits, or there exists an automor-
phism not swapping the two orbits while sending at least one vertex of the first orbit to a
vertex in the second orbit. Of course, the existence of an automorphism of the first kind in
X is equivalent to there being a transitive subgroup of automorphisms with the two orbits of
the cyclic group in question as blocks of imprimitivity. On the other hand, the existence of
an automorphism of the second kind in X means that the two orbits of the semiregular cyclic
subgroup do not form blocks of imprimitivity for the full automorphism group. For example,
it is easy to see that the class of generalized Petersen graphs [48] contains examples of each
of the four possibilities that may occur with this respect. It seems therefore natural to seek
for (non)existence conditions for these two kinds of automorphisms in X .

Problem 4. Given a vertex-transitive graph X with a (2, n)-semiregular automorphism α,
find necessary and sufficient conditions for the existence of an automorphism swapping the
two orbits of α, and find necessary and sufficient conditions for the existence of an automor-
phism not swapping the two orbits of α while sending at least one vertex of the first orbit to
a vertex in the second orbit.

More generally, let us consider all connected transitive graphs X arising, up to isomor-
phism of covering projections, as regular abelian covers p : X → Y of a fixed given (possibly
nonsimple or with semi-edges) graph Y . (For graph-covering terms not defined here we refer
the reader to [55, 102, 105].) As shown by Djoković [35], symmetry properties of X are, to
some extent, reflected by the symmetries of Y provided that enough automorphisms lift along
p. The lifting problem is well understood, see [35, 40, 44, 73, 76, 77, 78]. Thus, studying
symmetries of X arising via lifting automorphisms should be considered ‘easy’. It may hap-
pen, though, that not all symmetries of X arise this way. In particular, X could be transitive,
even if Y is not. So, what one wants is to decompose the covering projection as p = qr in
such a way that all symmetries of X arise via lifting automorphisms of an intermediate graph
Y ′ along r : X → Y ′. This is achieved by taking r to be the regular quotient by a normal
subgroup N of AutX which is contained in the group of covering transformations CT(p).
Repeating the reduction one eventually come to a, hopefully, small set of ‘basic graphs’ out
of which all graphs X arise ‘nicely’. Of course, what one should ask of these ‘basic graphs’,
in the first place, is that there should be a reasonably easy way of finding them. This im-
poses certain restrictions as to how the reduction is done – making an appropriate choice of
N above – and here the idea of takingN to be the kernel of the representation of the action of
AutX on an eigenspace of X comes into play. The ‘basic graphs’ are then characterized as
those which cannot be decomposed further in this manner, see [63, 64] for a characterization
of a class of arc-transitive cyclic covers and a class of bi-Cayley graphs on abelian groups. (A
bi-Cayley graph X is a graph which admits a semiregular group of automorphisms G with
two orbits. Some authors use the term semi-Cayley instead [69, 111].) In short, we pose the
following problem.

Problem 5. Given a connected graph Y on a reasonably small number of vertices, classify,
up to isomorphism of covering projections, all connected arc-transitive abelian covers of Y .

Observe that the above problem is related to the semiregularity problem from Section 2.
Namely, a graph contains a (m,n)-semiregular automorphism if and only if it is a Zn-cover
of a graph on m-vertices.
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Problem 5 is solved in [63] for a particular graph on two vertices. Namely let Y be a
graph of order 2 with a single edge between the two vertices and possibly some loops at each
of the two vertices. (A special case of such graphs are the generalized Petersen graphs [48].)
Then a cover of Y is a bi-Cayley graph, in particular, using the terminology of [63], a one-
matching bi-Cayley graph. We would like to mention that the classification of one-matching
bi-Cayley graphs done in [63] is “classification of finite simple groups free”, which is usually
not the case in solutions to problems of this kind.

5 Structural properties

In 1947 Tutte [120] showed that the maximum s-arc-transitivity of a cubic graph is 5, thus
opening up a very fruitful area of research. Later on Djoković and Miller [36] proved that
a vertex stabilizer in an s-regular subgroup of automorphisms of a cubic arc-transitive graph
is isomorphic to Z3, S3, S3 × Z2, S4, or S4 × Z2 depending on whether s = 1, 2, 3, 4 or 5,
respectively. In 1981, using the classification of finite simple groups, Weiss [126] generalized
Tutte’s result by showing that for an s-arc-transitive graph of valency greater than 2 we must
necessarily have that s ∈ {1, 2, 3, 4, 5, 7}.

Not surprisingly arc-transitive graphs, and cubic arc-transitive graphs in particular, have
received considerable attention over the years, the aim being to obtain structural results and
possibly a classification of such graphs of different transitivity degrees, particular orders or
satisfying additional properties (see, for example [27, 30, 31, 44, 45, 46, 47, 60, 70, 106, 107,
108, 109, 110, 130]). The frequently used methods in this respect are based on covering graph
techniques while using a particular additional condition about their automorphism groups
such as, for example, imprimitivity or existence of particular semiregular automorphisms
(see Sections 2 and 4). Also, the concept of consistent cycles together with a beautiful result
of Conway [17, 32] which says that given an arc-transitive graph X of valency d, an arc-
transitive subgroup G of AutX has d − 1 orbits on G-consistent cycles, is, for example,
an essential part of the approach lead to the complete classification of cubic arc-transitive
graphs to girth 6, see [66]. (A walk D = (u0, . . . , ur) in a graph X is called G-consistent,
where G ≤ AutX , if there exists g ∈ G such that ug

i = ui+1 for i ∈ {0, 1, . . . , r − 1}.)
We believe that similar applications of Conway’s result as well as its recent generalizations
due to Miklavič, Potočnik and Wilson [100, 101] will prove useful in future investigations of
symmetry properties in graphs.

Another interesting area of research are the so called half-arc-transitive graphs. Clearly,
a graph that is arc-transitive is also vertex-transitive and edge-transitive. But the converse is
not true in general. In particular, in 1966 Tutte [121] proved that the automorphism group
of a vertex-transitive and edge-transitive graph which is not arc-transitive has two orbits of
equal size on the arc set, and consequently that a vertex-transitive and edge-transitive graph
of odd valency is arc-transitive. A graph that is vertex-transitive and edge-transitive but not
arc-transitive is called half-arc-transitive graph. In 1966 Tutte [121] asked if for every given
even integer k ≥ 4 there exists a half-arc-transitive graph of valency k. A positive answer
was given by Bouwer in [21] by a construction of a half-arc-transitive graph of valency k
for any even integer k ≥ 4. The smallest known example of a half-arc-transitive graph is
the Doyle-Holt graph [7, 59] which is quartic and of order 27. Graphs admitting a half-
arc-transitive group actions are in a one-to-one correspondence with the so called orbital
graphs of groups with non-self-paired orbitals whereas graphs admitting arc-transitive group
actions are in a one-to-one correspondence with orbital graphs of groups with self-paired
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orbitals. In particular, let G be a transitive permutation group acting on a set V , and let
O 6= {(v, v) | v ∈ V } be a nontrivial orbital in the natural action of G on V × V . Then the
group G acts half-arc-transitively on the corresponding orbital graph with vertex set V and
edge set {uv | (u, v) ∈ O} when O 6= O∗ and it acts arc-transitively when O = O∗, where
O∗ = {(u, v) | (v, u) ∈ O} is the paired orbital of O.

Half-arc-transitive graphs, quartic half-arc-transitive graphs in particular, and graphs ad-
mitting half-arc-transitive group actions in general have been an active topic of research
in the last decades. In particular, a classification of certain restricted families and vari-
ous constructions of new families of such graphs together with some structural properties
are known, see [11, 29, 41, 71, 74, 75, 84, 85, 86, 87, 88, 98, 99, 112, 115, 116, 117,
118, 123, 129]. There are several approaches used in this respect, such as for example,
investigation of the (im)primitivity of half-arc-transitive group actions on graphs, geome-
try related questions, and questions concerning classification for various restricted families
of half-arc-transitive graphs. In this context, further structural results about quartic half-
arc-transitive graphs are most sought for. The concept of alter-exponent in digraphs, in-
troduced in [95], turns out to be useful in this respect. In particular, given a digraph D,
{v0, v1, . . . , vn} ⊆ V (D) and {a1, a2, . . . , an} ⊆ A(D) is a subset of the arc set of D,
a sequence W = (v0, a1, v1, a2, v2, . . . , vn−1, an, vn) is a walk of length n in D from v0
to vn if for all i ∈ {1, 2, . . . , n} either ai = (vi−1, vi) or ai = (vi, vi−1). In the first
case ai is positively oriented in W , and is negatively oriented in the second case. The sum
s(W ) of the walk W is the difference between the number of positively oriented arcs in the
walk and the number of negatively oriented arcs in the walk. The tolerance of W is the set
{sk(W ) | k ∈ {0, 1, . . . , n}}, where sk(W ) is the sum of the subwalk of W from v0 to vk

and s0(W ) = 0. Observe that the tolerance of a walk is always an interval of integers con-
taining 0. We say that two vertices u and v of a digraph D are alter-equivalent with tolerance
I if there is a walk from u to v with sum 0 and tolerance J , J ⊆ I . It is not difficult to see
that this relation is an equivalence relation. Let the corresponding partition of V (D) be de-
noted byBI(D). Then the alter-exponent of a digraphD is the smallest positive integer t, for
which B[0,t](D) = B[0,∞](D). Clearly, each graph X admitting a half-arc-transitive action
of a groupG with respect to the non-self-paired orbitalO can be viewed as a vertex-transitive
digraph D with vertex set V (D) = V (X) and arc set A(D) = O, and thus the concept of
alter-exponent, in particular G-alter-exponent, can be applied. Quartic graphs admitting a
half-arc-transitive action with respect to which the corresponding alter-exponent equals 1 are
called tightly attached graphs and they has been completely classified (see [84, 96, 115]).
Thus a natural next step in this direction would be to solve the following problem posed in
[95].

Problem 6. [95] Classify quartic graphs admitting a half-arc-transitive action with respect to
which the corresponding alter-exponent equals 2.

Finally, let us mention that vertex-transitive graphs have many applications, sometimes
in quite surprising ways. One of such applications concerns configurations. Structural results
on vertex-transitive graphs are useful, for example, in the context of symmetric configura-
tions because there is a one-to-one correspondence between bipartite vertex-transitive graphs
of girth at least 6 and the Levi graphs of self-dual, point- and line-transitive combinatorial
configurations. Similarly, bipartite arc-transitive graphs of girth at least 6 are in a one-to-one
correspondence with the Levi graphs of flag-transitive combinatorial configurations, and bi-
partite half-arc-transitive graphs of girth at least 6 are in a one-to-one correspondence with
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the Levi graphs of weakly flag-transitive combinatorial configurations. (A symmetric combi-
natorial (vr) configuration consists of v points and v lines such that each point is incident to
r lines and each line is incident to r points, and any pair of points is on at most one line and
any pair of lines intersect in at most one point. A Levi graph of a configuration is a graph
whose vertex set consists of points and lines of the configuration with the edge set mirror-
ing the point/line incidence relation. A flag is a pair of incident point and line. A weakly
flag-transitive configuration is a configuration whose group of automorphisms acts intransi-
tively on flags but the group of all automorphisms and anti-automorphisms acts transitively
on flags.)

Several results making use of this correspondence are known (see [28, 33, 58, 96, 92,
102]). In this sense many open problems in symmetric configurations, such as, for exam-
ple, open problems on self-dual, point- and line-transitive (v3) configurations is, through
the above mentioned correspondence, are special cases of open problems on cubic vertex-
transitive graphs (see [19, 20, 22, 34, 58, 92, 94, 103]). And similarly, open problems con-
cerning weakly flag-transitive configurations are special cases of open problems on half-
arc-transitive graphs (see [16, 96, 93]). For further directions concerning configurations see
[14, 18, 33, 53, 54, 56, 57, 113, 114].
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[38] E. Dobson, A. Malnič, D. Marušič and L. A. Nowitz, Minimal normal subgroups of transitive permutation
groups of square-free degree, Discrete Math. 307 (2007), 373–385.
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