9 research outputs found

    Visibly Pushdown Modular Games

    Full text link
    Games on recursive game graphs can be used to reason about the control flow of sequential programs with recursion. In games over recursive game graphs, the most natural notion of strategy is the modular strategy, i.e., a strategy that is local to a module and is oblivious to previous module invocations, and thus does not depend on the context of invocation. In this work, we study for the first time modular strategies with respect to winning conditions that can be expressed by a pushdown automaton. We show that such games are undecidable in general, and become decidable for visibly pushdown automata specifications. Our solution relies on a reduction to modular games with finite-state automata winning conditions, which are known in the literature. We carefully characterize the computational complexity of the considered decision problem. In particular, we show that modular games with a universal Buchi or co Buchi visibly pushdown winning condition are EXPTIME-complete, and when the winning condition is given by a CARET or NWTL temporal logic formula the problem is 2EXPTIME-complete, and it remains 2EXPTIME-hard even for simple fragments of these logics. As a further contribution, we present a different solution for modular games with finite-state automata winning condition that runs faster than known solutions for large specifications and many exits.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Borel Ranks and Wadge Degrees of Context Free Omega Languages

    Get PDF
    We show that, from a topological point of view, considering the Borel and the Wadge hierarchies, 1-counter B\"uchi automata have the same accepting power than Turing machines equipped with a B\"uchi acceptance condition. In particular, for every non null recursive ordinal alpha, there exist some Sigma^0_alpha-complete and some Pi^0_alpha-complete omega context free languages accepted by 1-counter B\"uchi automata, and the supremum of the set of Borel ranks of context free omega languages is the ordinal gamma^1_2 which is strictly greater than the first non recursive ordinal. This very surprising result gives answers to questions of H. Lescow and W. Thomas [Logical Specifications of Infinite Computations, In:"A Decade of Concurrency", LNCS 803, Springer, 1994, p. 583-621]

    Measuring Permissiveness in Parity Games: Mean-Payoff Parity Games Revisited

    Full text link
    We study nondeterministic strategies in parity games with the aim of computing a most permissive winning strategy. Following earlier work, we measure permissiveness in terms of the average number/weight of transitions blocked by the strategy. Using a translation into mean-payoff parity games, we prove that the problem of computing (the permissiveness of) a most permissive winning strategy is in NP intersected coNP. Along the way, we provide a new study of mean-payoff parity games. In particular, we prove that the opponent player has a memoryless optimal strategy and give a new algorithm for solving these games.Comment: 30 pages, revised versio

    Games with Winning Conditions of High Borel Complexity

    Get PDF
    International audienceWe first consider infinite two-player games on pushdown graphs. In previous work, Cachat, Duparc and Thomas [4] have presented a winning decidable condition that is Sigma_3-complete in the Borel hierarchy. This was the first example of a decidable winning condition of such Borel complexity. We extend this result by giving a family of decidable winning conditions of arbitrary finite Borel complexity. From this family, we deduce a family of decidable winning conditions of arbitrary finite Borel complexity for games played on finite graphs. The problem of deciding the winner for these conditions is shown to be non-elementary
    corecore