337,129 research outputs found
Estimating the furrow infiltration characteristic from a single advance point
Management and control of surface irrigation, in particular furrow irrigation, is limited by spatio-temporal soil infiltration variability as well as the high cost and time associated with collecting intensive field data for estimation of the infiltration characteristics. Recent work has proposed scaling the commonly used infiltration function by using a model infiltration curve and a single advance point for every other furrow in an irrigation event. Scaling factors were calculated for a series of furrows at two sites and at four points down the length of the field (0.25 L, 0.5 L, 0.75 L and L). Differences in the value of the scaling factor with distance were found to be a function of the shape of the advance curves. It is concluded that use of points early in the advance results in a substantial loss of accuracy and should be avoided. The scaling factor was also strongly correlated with the furrow-wetted perimeter suggesting that the scaling is an appropriate way of both predicting and accommodating the effect of the hydraulic variability
Comparison of Algorithms and Parameterisations for Infiltration into Organic-Covered Permafrost Soils
Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology.
In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada’s discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1) the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2) differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15 to 30 cm, (3) despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4) the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines that can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils
Macrophage depletion disrupts immune balance and energy homeostasis.
Increased macrophage infiltration in tissues including white adipose tissue and skeletal muscle has been recognized as a pro-inflammatory factor that impairs insulin sensitivity in obesity. However, the relationship between tissue macrophages and energy metabolism under non-obese physiological conditions is not clear. To study a homeostatic role of macrophages in energy homeostasis, we depleted tissue macrophages in adult mice through conditional expression of diphtheria toxin (DT) receptor and DT-induced apoptosis. Macrophage depletion robustly reduced body fat mass due to reduced energy intake. These phenotypes were reversed after macrophage recovery. As a potential mechanism, severe hypothalamic and systemic inflammation was induced by neutrophil (NE) infiltration in the absence of macrophages. In addition, macrophage depletion dramatically increased circulating granulocyte colony-stimulating factor (G-CSF) which is indispensable for NE production and tissue infiltration. Our in vitro study further revealed that macrophages directly suppress G-CSF gene expression. Therefore, our study indicates that macrophages may play a critical role in integrating immune balance and energy homeostasis under physiological conditions
Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF
Injury to peripheral nerves results in the infiltration of immune cells, which remove axonal- and myelin-derived material. Schwann cells could play a key role in this process by regulating macrophage infiltration. We show here that medium conditioned by primary denervated Schwann cells or the Schwannoma cell line RN22 produces chemotactic activity for macrophages. The presence of blocking antibodies to macrophage chemoattractant protein-1 (MCP-1) or leukemia inhibitory factor (LIF) reduced this activity to similar to35 and 65% of control levels, respectively, and only 15% remained in the presence of both antibodies. The presence of chemotactic LIF in Schwann cell-conditioned medium was confirmed by using cells from lif-/- mice. Although interleukin-6 (IL-6) is not itself a chemotactic factor, we found that medium from il-6-/- nerves showed only 40% of the activity secreted by wild-type nerves. Furthermore, IL-6 rapidly induced LIF mRNA in primary Schwann cells, and LIF rapidly induced MCP-1 mRNA expression. Treatment of RN22 Schwannoma cells with IL-6 or LIF enhanced the secretion of the chemotactic activity of these cells.These observations show that Schwann cells attract macrophages by secreting MCP-1 and LIF. They also provide evidence for an autocrine-signaling cascade involving IL-6, LIF, and MCP-1, which amplifies the Schwann cell-derived chemotactic signals gradually, in agreement with the delayed entry of macrophages to injured nerves
Simulation of capillary infiltration into packing structures by the Lattice-Boltzmann method for the optimization of ceramic materials
In this work we want to simulate with the Lattice-Boltzmann method in 2D the
capillary infiltration into porous structures obtained from the packing of
particles. The experimental problem motivating our work is the densification of
carbon preforms by reactive melt infiltration. The aim is to determine
optimization principles for the manufacturing of high-performance ceramics.
Simulations are performed for packings with varying structural properties. Our
analysis suggests that the observed slow infiltrations can be ascribed to
interface dynamics. Pinning represents the primary factor retarding fluid
penetration. The mechanism responsible for this phenomenon is analyzed in
detail. When surface growth is allowed, it is found that the phenomenon of
pinning becomes stronger. Systems trying to reproduce typical experimental
conditions are also investigated. It turns out that the standard for accurate
simulations is challenging. The primary obstacle to overcome for enhanced
accuracy seems to be the over-occurrence of pinning
Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach
Distributed models to forecast the spatial and temporal occurrence of
rainfall-induced shallow landslides are based on deterministic laws. These
models extend spatially the static stability models adopted in geotechnical
engineering, and adopt an infinite-slope geometry to balance the resisting and
the driving forces acting on the sliding mass. An infiltration model is used to
determine how rainfall changes pore-water conditions, modulating the local
stability/instability conditions. A problem with the operation of the existing
models lays in the difficulty in obtaining accurate values for the several
variables that describe the material properties of the slopes. The problem is
particularly severe when the models are applied over large areas, for which
sufficient information on the geotechnical and hydrological conditions of the
slopes is not generally available. To help solve the problem, we propose a
probabilistic Monte Carlo approach to the distributed modeling of
rainfall-induced shallow landslides. For the purpose, we have modified the
Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability
Analysis (TRIGRS) code. The new code (TRIGRS-P) adopts a probabilistic approach
to compute, on a cell-by-cell basis, transient pore-pressure changes and
related changes in the factor of safety due to rainfall infiltration.
Infiltration is modeled using analytical solutions of partial differential
equations describing one-dimensional vertical flow in isotropic, homogeneous
materials. Both saturated and unsaturated soil conditions can be considered.
TRIGRS-P copes with the natural variability inherent to the mechanical and
hydrological properties of the slope materials by allowing values of the TRIGRS
model input parameters to be sampled randomly from a given probability
distribution. [..]Comment: 25 pages, 14 figures, 9 tables. Revised version; accepted for
publication in Geoscientific Model Development on 13 February 201
Lattice Boltzmann simulations on the role of channel structure for reactive capillary infiltration
It is widely recognized that the structure of porous media is of relevance
for a variety of mechanical and physical phenomena. The focus of the present
work is on capillarity, a pore-scale process occurring at the micron scale. We
attempt to characterize the influence of pore shape for capillary infiltration
by means of Lattice Boltzmann simulations in 2D with reactive boundaries
leading to surface growth and ultimately to pore closure. The systems under
investigation consist of single channels with different simplified
morphologies: namely, periodic profiles with sinusoidal, step-shaped and
zig-zag walls, as well as constrictions and expansions with rectangular, convex
and concave steps. This is a useful way to decompose the complexity of typical
porous media into basic structures. The simulations show that the minimum
radius alone fails to characterize properly the infiltration dynamics. The
structure of the channels emerge as the dominant property controlling the
process. A factor responsible for this behavior is identified as being the
occurrence of pinning of the contact line. It turns out that the optimal
configuration for the pore structure arises from the packing of large particles
with round shapes. In this case, the probability to have flow paths wide and
straight is higher. Faceted surfaces presenting sharp edges should be avoided
because of the phenomenon of pinning near narrow-to-wide parts. This study is
motivated by the infiltration of molten metals into carbon preforms. This is a
manufacturing technique for ceramic components devised to advanced
applications. Guidelines for experimental work are discussed.Comment: Publication: http://dx.doi.org/10.1080/19942060.2015.1026432
Material: https://sites.google.com/site/lbmodule/. Engineering Applications
of Computational Fluid Mechanics (2015
Surface Water Infiltration in Loess Soils of the Lower Mississippi River Valley: An Emphasis on Land Use
The Alluvial Aquifer is the shallowest and most heavily used groundwater aquifer in the Lower Mississippi River Valley, particularly in the Delta region of eastern Arkansas. However, the Alluvial Aquifer is being depleted faster than the rate of recharge, primarily due to excessive withdrawals for irrigated crop production. Since extensive irrigation in the highly agriculturally productive Delta region of eastern Arkansas has been a main culprit in the groundwater depletion issues the region faces, a better understanding of how ecological factors and/or agricultural best management practices could possibly increase infiltration, to consequently increase recharge, are needed in order to either slow down or reverse the declining aquifer levels through the Delta region of eastern Arkansas. Therefore, the objective of this study was to evaluate the effects of landuse on surface water infiltration into alluvial and loessial soils in the Delta region of eastern Arkansas. Landuse combinations of interest included conventional and no-tillage agricultural practices, deciduous and coniferous forests, and native/natural grasslands. Replicate infiltration measurements were conducted using a double-ring infiltrometer, with a 15-cm inner-ring diameter, across multiple sites representing each of the five landuses. Despite the initial soil water content being greater (P \u3c 0.05) in the grassland than in all other ecosystems, the overall infiltration rate into the deciduous forest ecosystem (1.2 cm hr-1) was greater (P \u3c 0.05) than all other landuse types, which did not differ and averaged 0.10 cm hr-1. In addition, though the slope of the relationship between the natural logarithm of the infiltration rate versus the mid-point of time was unaffected (P \u3e 0.05) by landuse, the intercept parameter differed (P \u3c 0.05) among landuses. Results of this study demonstrated that landuse significantly affects infiltration processes in the fine-textured loessial and alluvial soils in the Delta region of eastern Arkansas; thus, further research is warranted into factors that can increase surface infiltration and potentially groundwater recharge
Age-related changes to macrophages are detrimental to fracture healing in mice.
The elderly population suffers from higher rates of complications during fracture healing that result in increased morbidity and mortality. Inflammatory dysregulation is associated with increased age and is a contributing factor to the myriad of age-related diseases. Therefore, we investigated age-related changes to an important cellular regulator of inflammation, the macrophage, and the impact on fracture healing outcomes. We demonstrated that old mice (24 months) have delayed fracture healing with significantly less bone and more cartilage compared to young mice (3 months). The quantity of infiltrating macrophages into the fracture callus was similar in old and young mice. However, RNA-seq analysis demonstrated distinct differences in the transcriptomes of macrophages derived from the fracture callus of old and young mice, with an up-regulation of M1/pro-inflammatory genes in macrophages from old mice as well as dysregulation of other immune-related genes. Preventing infiltration of the fracture site by macrophages in old mice improved healing outcomes, with significantly more bone in the calluses of treated mice compared to age-matched controls. After preventing infiltration by macrophages, the macrophages remaining within the fracture callus were collected and examined via RNA-seq analysis, and their transcriptome resembled macrophages from young calluses. Taken together, infiltrating macrophages from old mice demonstrate detrimental age-related changes, and depleting infiltrating macrophages can improve fracture healing in old mice
- …
