19,611 research outputs found

    Chinese Internet AS-level Topology

    Full text link
    We present the first complete measurement of the Chinese Internet topology at the autonomous systems (AS) level based on traceroute data probed from servers of major ISPs in mainland China. We show that both the Chinese Internet AS graph and the global Internet AS graph can be accurately reproduced by the Positive-Feedback Preference (PFP) model with the same parameters. This result suggests that the Chinese Internet preserves well the topological characteristics of the global Internet. This is the first demonstration of the Internet's topological fractality, or self-similarity, performed at the level of topology evolution modeling.Comment: This paper is a preprint of a paper submitted to IEE Proceedings on Communications and is subject to Institution of Engineering and Technology Copyright. If accepted, the copy of record will be available at IET Digital Librar

    PinMe: Tracking a Smartphone User around the World

    Full text link
    With the pervasive use of smartphones that sense, collect, and process valuable information about the environment, ensuring location privacy has become one of the most important concerns in the modern age. A few recent research studies discuss the feasibility of processing data gathered by a smartphone to locate the phone's owner, even when the user does not intend to share his location information, e.g., when the Global Positioning System (GPS) is off. Previous research efforts rely on at least one of the two following fundamental requirements, which significantly limit the ability of the adversary: (i) the attacker must accurately know either the user's initial location or the set of routes through which the user travels and/or (ii) the attacker must measure a set of features, e.g., the device's acceleration, for potential routes in advance and construct a training dataset. In this paper, we demonstrate that neither of the above-mentioned requirements is essential for compromising the user's location privacy. We describe PinMe, a novel user-location mechanism that exploits non-sensory/sensory data stored on the smartphone, e.g., the environment's air pressure, along with publicly-available auxiliary information, e.g., elevation maps, to estimate the user's location when all location services, e.g., GPS, are turned off.Comment: This is the preprint version: the paper has been published in IEEE Trans. Multi-Scale Computing Systems, DOI: 0.1109/TMSCS.2017.275146

    Inferring Energy Bounds via Static Program Analysis and Evolutionary Modeling of Basic Blocks

    Full text link
    The ever increasing number and complexity of energy-bound devices (such as the ones used in Internet of Things applications, smart phones, and mission critical systems) pose an important challenge on techniques to optimize their energy consumption and to verify that they will perform their function within the available energy budget. In this work we address this challenge from the software point of view and propose a novel parametric approach to estimating tight bounds on the energy consumed by program executions that are practical for their application to energy verification and optimization. Our approach divides a program into basic (branchless) blocks and estimates the maximal and minimal energy consumption for each block using an evolutionary algorithm. Then it combines the obtained values according to the program control flow, using static analysis, to infer functions that give both upper and lower bounds on the energy consumption of the whole program and its procedures as functions on input data sizes. We have tested our approach on (C-like) embedded programs running on the XMOS hardware platform. However, our method is general enough to be applied to other microprocessor architectures and programming languages. The bounds obtained by our prototype implementation can be tight while remaining on the safe side of budgets in practice, as shown by our experimental evaluation.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854). Improved version of the one presented at the HIP3ES 2016 workshop (v1): more experimental results (added benchmark to Table 1, added figure for new benchmark, added Table 3), improved Fig. 1, added Fig.

    Inferring AS Relationships: Dead End or Lively Beginning?

    Full text link
    Recent techniques for inferring business relationships between ASs have yielded maps that have extremely few invalid BGP paths in the terminology of Gao. However, some relationships inferred by these newer algorithms are incorrect, leading to the deduction of unrealistic AS hierarchies. We investigate this problem and discover what causes it. Having obtained such insight, we generalize the problem of AS relationship inference as a multiobjective optimization problem with node-degree-based corrections to the original objective function of minimizing the number of invalid paths. We solve the generalized version of the problem using the semidefinite programming relaxation of the MAX2SAT problem. Keeping the number of invalid paths small, we obtain a more veracious solution than that yielded by recent heuristics

    Active Learning of Multiple Source Multiple Destination Topologies

    Get PDF
    We consider the problem of inferring the topology of a network with MM sources and NN receivers (hereafter referred to as an MM-by-NN network), by sending probes between the sources and receivers. Prior work has shown that this problem can be decomposed into two parts: first, infer smaller subnetwork components (i.e., 11-by-NN's or 22-by-22's) and then merge these components to identify the MM-by-NN topology. In this paper, we focus on the second part, which had previously received less attention in the literature. In particular, we assume that a 11-by-NN topology is given and that all 22-by-22 components can be queried and learned using end-to-end probes. The problem is which 22-by-22's to query and how to merge them with the given 11-by-NN, so as to exactly identify the 22-by-NN topology, and optimize a number of performance metrics, including the number of queries (which directly translates into measurement bandwidth), time complexity, and memory usage. We provide a lower bound, N2\lceil \frac{N}{2} \rceil, on the number of 22-by-22's required by any active learning algorithm and propose two greedy algorithms. The first algorithm follows the framework of multiple hypothesis testing, in particular Generalized Binary Search (GBS), since our problem is one of active learning, from 22-by-22 queries. The second algorithm is called the Receiver Elimination Algorithm (REA) and follows a bottom-up approach: at every step, it selects two receivers, queries the corresponding 22-by-22, and merges it with the given 11-by-NN; it requires exactly N1N-1 steps, which is much less than all (N2)\binom{N}{2} possible 22-by-22's. Simulation results over synthetic and realistic topologies demonstrate that both algorithms correctly identify the 22-by-NN topology and are near-optimal, but REA is more efficient in practice

    Topology Discovery of Sparse Random Graphs With Few Participants

    Get PDF
    We consider the task of topology discovery of sparse random graphs using end-to-end random measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of the nodes are hidden, and do not provide any information for topology discovery. We consider topology discovery under two routing models: (a) the participants exchange messages along the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants exchange messages along the second shortest path. For scenario (a), our proposed algorithm results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected participants. For scenario (b), we obtain a much stronger result, and show that we can achieve consistent reconstruction when a sub-linear number of uniformly selected nodes participate. This implies that accurate discovery of sparse random graphs is tractable using an extremely small number of participants. We finally obtain a lower bound on the number of participants required by any algorithm to reconstruct the original random graph up to a given edit distance. We also demonstrate that while consistent discovery is tractable for sparse random graphs using a small number of participants, in general, there are graphs which cannot be discovered by any algorithm even with a significant number of participants, and with the availability of end-to-end information along all the paths between the participants.Comment: A shorter version appears in ACM SIGMETRICS 2011. This version is scheduled to appear in J. on Random Structures and Algorithm

    Connectivity measures for internet topologies.

    Get PDF
    The topology of the Internet has initially been modelled as an undirected graph, where vertices correspond to so-called Autonomous Systems (ASs),and edges correspond to physical links between pairs of ASs. However, in order to capture the impact of routing policies, it has recently become apparent that one needs to classify the edges according to the existing economic relationships (customer-provider, peer-to-peer or siblings) between the ASs. This leads to a directed graph model in which traffic can be sent only along so-called valley-free paths. Four different algorithms have been proposed in the literature for inferring AS relationships using publicly available data from routing tables. We investigate the differences in the graph models produced by these algorithms, focussing on connectivity measures. To this aim, we compute the maximum number of vertex-disjoint valley-free paths between ASs as well as the size of a minimum cut separating a pair of ASs. Although these problems are solvable in polynomial time for ordinary graphs, they are NP-hard in our setting. We formulate the two problems as integer programs, and we propose a number of exact algorithms for solving them. For the problem of finding the maximum number of vertex-disjoint paths, we discuss two algorithms; the first one is a branch-and-price algorithm based on the IP formulation, and the second algorithm is a non LP based branch-and-bound algorithm. For the problem of finding minimum cuts we use a branch-and-cut algo rithm, based on the IP formulation of this problem. Using these algorithms, we obtain exact solutions for both problems in reasonable time. It turns out that there is a large gap in terms of the connectivity measures between the undirected and directed models. This finding supports our conclusion that economic relationships need to be taken into account when building a topology of the Internet.Research; Internet;
    corecore