1,479 research outputs found

    Characterization and Inference of Graph Diffusion Processes from Observations of Stationary Signals

    Full text link
    Many tools from the field of graph signal processing exploit knowledge of the underlying graph's structure (e.g., as encoded in the Laplacian matrix) to process signals on the graph. Therefore, in the case when no graph is available, graph signal processing tools cannot be used anymore. Researchers have proposed approaches to infer a graph topology from observations of signals on its nodes. Since the problem is ill-posed, these approaches make assumptions, such as smoothness of the signals on the graph, or sparsity priors. In this paper, we propose a characterization of the space of valid graphs, in the sense that they can explain stationary signals. To simplify the exposition in this paper, we focus here on the case where signals were i.i.d. at some point back in time and were observed after diffusion on a graph. We show that the set of graphs verifying this assumption has a strong connection with the eigenvectors of the covariance matrix, and forms a convex set. Along with a theoretical study in which these eigenvectors are assumed to be known, we consider the practical case when the observations are noisy, and experimentally observe how fast the set of valid graphs converges to the set obtained when the exact eigenvectors are known, as the number of observations grows. To illustrate how this characterization can be used for graph recovery, we present two methods for selecting a particular point in this set under chosen criteria, namely graph simplicity and sparsity. Additionally, we introduce a measure to evaluate how much a graph is adapted to signals under a stationarity assumption. Finally, we evaluate how state-of-the-art methods relate to this framework through experiments on a dataset of temperatures.Comment: Submitted to IEEE Transactions on Signal and Information Processing over Network

    Online Machine Learning for Graph Topology Identification from Multiple Time Series

    Get PDF
    High dimensional time series data are observed in many complex systems. In networked data, some of the time series are influenced by other time series. Identifying these relations encoded in a graph structure or topology among the time series is of paramount interest in certain applications since the identified structure can provide insights about the underlying system and can assist in inference tasks. In practice, the underlying topology is usually sparse, that is, not all the participating time series in influence each other. The goal of this dissertation pertains to study the problem of sparse topology identification under various settings. Topology identification from time series is a challenging task. The first major challenge in topology identification is that the assumption of static topology does not hold always in practice since most of the practical systems are evolving with time. For instance, in econometrics, social networks, etc., the relations among the time series can change over time. Identifying the topologies of such dynamic networks is a major challenge. The second major challenge is that in most practical scenarios, the data is not available at once - it is coming in a streaming fashion. Hence, batch approaches are either not applicable or they become computationally expensive since a batch algorithm is needed to be run when a new datum becomes available. The third challenge is that the multi-dimensional time series data can contain missing values due faulty sensors, privacy and security reasons, or due to saving energy. We address the aforementioned challenges in this dissertation by proposing online/-batch algorithms to solve the problem of time-varying topology identification. A model based on vector autoregressive (VAR) process is adopted initially. The parameters of the VAR model reveal the topology of the underlying network. First, two online algorithms are proposed for the case of streaming data. Next, using the same VAR model, two online algorithms under the framework of online optimization are presented to track the time-varying topologies. To evaluate the performance of propose online algorithms, we show that both the proposed algorithms incur a sublinear static regret. To characterize the performance theoretically in time-varying scenarios, a bound on the dynamic regret for one of the proposed algorithms (TIRSO) is derived. Next, using a structural equation model (SEM) for topology identification, an online algorithm for tracking time-varying topologies is proposed, and a bound on the dynamic regret is also derived for the proposed algorithm. Moreover, using a non-stationary VAR model, an algorithm for dynamic topology identification and breakpoint detection is also proposed, where the notion of local structural breakpoint is introduced to accommodate the concept of breakpoint where instead of the whole topology, only a few edges vary. Finally, the problem of tracking VAR-based time-varying topologies with missing data is investigated. Online algorithms are proposed where the joint signal and topology estimation is carried out. Dynamic regret analysis is also presented for the proposed algorithm. For all the previously mentioned works, simulation tests about the proposed algorithms are also presented and discussed in this dissertation. The numerical results of the proposed algorithms corroborate with the theoretical analysis presented in this dissertation.publishedVersio
    • …
    corecore