51 research outputs found

    A Posterior Probability Approach for Gene Regulatory Network Inference in Genetic Perturbation Data

    Full text link
    Inferring gene regulatory networks is an important problem in systems biology. However, these networks can be hard to infer from experimental data because of the inherent variability in biological data as well as the large number of genes involved. We propose a fast, simple method for inferring regulatory relationships between genes from knockdown experiments in the NIH LINCS dataset by calculating posterior probabilities, incorporating prior information. We show that the method is able to find previously identified edges from TRANSFAC and JASPAR and discuss the merits and limitations of this approach

    Listen to genes : dealing with microarray data in the frequency domain

    Get PDF
    Background: We present a novel and systematic approach to analyze temporal microarray data. The approach includes normalization, clustering and network analysis of genes. Methodology: Genes are normalized using an error model based uniform normalization method aimed at identifying and estimating the sources of variations. The model minimizes the correlation among error terms across replicates. The normalized gene expressions are then clustered in terms of their power spectrum density. The method of complex Granger causality is introduced to reveal interactions between sets of genes. Complex Granger causality along with partial Granger causality is applied in both time and frequency domains to selected as well as all the genes to reveal the interesting networks of interactions. The approach is successfully applied to Arabidopsis leaf microarray data generated from 31,000 genes observed over 22 time points over 22 days. Three circuits: a circadian gene circuit, an ethylene circuit and a new global circuit showing a hierarchical structure to determine the initiators of leaf senescence are analyzed in detail. Conclusions: We use a totally data-driven approach to form biological hypothesis. Clustering using the power-spectrum analysis helps us identify genes of potential interest. Their dynamics can be captured accurately in the time and frequency domain using the methods of complex and partial Granger causality. With the rise in availability of temporal microarray data, such methods can be useful tools in uncovering the hidden biological interactions. We show our method in a step by step manner with help of toy models as well as a real biological dataset. We also analyse three distinct gene circuits of potential interest to Arabidopsis researchers

    MiniTUBA: a Web-Based Dynamic Bayesian Network Analysis System

    Get PDF

    Bioinformatics tools in predictive ecology: Applications to fisheries

    Get PDF
    This article is made available throught the Brunel Open Access Publishing Fund - Copygith @ 2012 Tucker et al.There has been a huge effort in the advancement of analytical techniques for molecular biological data over the past decade. This has led to many novel algorithms that are specialized to deal with data associated with biological phenomena, such as gene expression and protein interactions. In contrast, ecological data analysis has remained focused to some degree on off-the-shelf statistical techniques though this is starting to change with the adoption of state-of-the-art methods, where few assumptions can be made about the data and a more explorative approach is required, for example, through the use of Bayesian networks. In this paper, some novel bioinformatics tools for microarray data are discussed along with their ‘crossover potential’ with an application to fisheries data. In particular, a focus is made on the development of models that identify functionally equivalent species in different fish communities with the aim of predicting functional collapse

    Model-based clustering with data correction for removing artifacts in gene expression data

    Full text link
    The NIH Library of Integrated Network-based Cellular Signatures (LINCS) contains gene expression data from over a million experiments, using Luminex Bead technology. Only 500 colors are used to measure the expression levels of the 1,000 landmark genes measured, and the data for the resulting pairs of genes are deconvolved. The raw data are sometimes inadequate for reliable deconvolution leading to artifacts in the final processed data. These include the expression levels of paired genes being flipped or given the same value, and clusters of values that are not at the true expression level. We propose a new method called model-based clustering with data correction (MCDC) that is able to identify and correct these three kinds of artifacts simultaneously. We show that MCDC improves the resulting gene expression data in terms of agreement with external baselines, as well as improving results from subsequent analysis.Comment: 28 page

    A Top-Performing Algorithm for the DREAM3 Gene Expression Prediction Challenge

    Get PDF
    A wealth of computational methods has been developed to address problems in systems biology, such as modeling gene expression. However, to objectively evaluate and compare such methods is notoriously difficult. The DREAM (Dialogue on Reverse Engineering Assessments and Methods) project is a community-wide effort to assess the relative strengths and weaknesses of different computational methods for a set of core problems in systems biology. This article presents a top-performing algorithm for one of the challenge problems in the third annual DREAM (DREAM3), namely the gene expression prediction challenge. In this challenge, participants are asked to predict the expression levels of a small set of genes in a yeast deletion strain, given the expression levels of all other genes in the same strain and complete gene expression data for several other yeast strains. I propose a simple -nearest-neighbor (KNN) method to solve this problem. Despite its simplicity, this method works well for this challenge, sharing the “top performer” honor with a much more sophisticated method. I also describe several alternative, simple strategies, including a modified KNN algorithm that further improves the performance of the standard KNN method. The success of these methods suggests that complex methods attempting to integrate multiple data sets do not necessarily lead to better performance than simple yet robust methods. Furthermore, none of these top-performing methods, including the one by a different team, are based on gene regulatory networks, which seems to suggest that accurately modeling gene expression using gene regulatory networks is unfortunately still a difficult task

    Bayesian network prior: network analysis of biological data using external knowledge

    Get PDF
    Motivation: Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event ‘gene interaction’ and is used to calculate the probability of a candidate graph (G) in the structure learning process. Results: Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods

    Constructing non-stationary Dynamic Bayesian Networks with a flexible lag choosing mechanism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dynamic Bayesian Networks (DBNs) are widely used in regulatory network structure inference with gene expression data. Current methods assumed that the underlying stochastic processes that generate the gene expression data are stationary. The assumption is not realistic in certain applications where the intrinsic regulatory networks are subject to changes for adapting to internal or external stimuli.</p> <p>Results</p> <p>In this paper we investigate a novel non-stationary DBNs method with a potential regulator detection technique and a flexible lag choosing mechanism. We apply the approach for the gene regulatory network inference on three non-stationary time series data. For the Macrophages and Arabidopsis data sets with the reference networks, our method shows better network structure prediction accuracy. For the Drosophila data set, our approach converges faster and shows a better prediction accuracy on transition times. In addition, our reconstructed regulatory networks on the Drosophila data not only share a lot of similarities with the predictions of the work of other researchers but also provide many new structural information for further investigation.</p> <p>Conclusions</p> <p>Compared with recent proposed non-stationary DBNs methods, our approach has better structure prediction accuracy By detecting potential regulators, our method reduces the size of the search space, hence may speed up the convergence of MCMC sampling.</p

    Inferring cluster-based networks from differently stimulated multiple time-course gene expression data

    Get PDF
    Motivation: Clustering and gene network inference often help to predict the biological functions of gene subsets. Recently, researchers have accumulated a large amount of time-course transcriptome data collected under different treatment conditions to understand the physiological states of cells in response to extracellular stimuli and to identify drug-responsive genes. Although a variety of statistical methods for clustering and inferring gene networks from expression profiles have been proposed, most of these are not tailored to simultaneously treat expression data collected under multiple stimulation conditions
    corecore