7,131 research outputs found

    A Posterior Probability Approach for Gene Regulatory Network Inference in Genetic Perturbation Data

    Full text link
    Inferring gene regulatory networks is an important problem in systems biology. However, these networks can be hard to infer from experimental data because of the inherent variability in biological data as well as the large number of genes involved. We propose a fast, simple method for inferring regulatory relationships between genes from knockdown experiments in the NIH LINCS dataset by calculating posterior probabilities, incorporating prior information. We show that the method is able to find previously identified edges from TRANSFAC and JASPAR and discuss the merits and limitations of this approach

    How to understand the cell by breaking it: network analysis of gene perturbation screens

    Get PDF
    Modern high-throughput gene perturbation screens are key technologies at the forefront of genetic research. Combined with rich phenotypic descriptors they enable researchers to observe detailed cellular reactions to experimental perturbations on a genome-wide scale. This review surveys the current state-of-the-art in analyzing perturbation screens from a network point of view. We describe approaches to make the step from the parts list to the wiring diagram by using phenotypes for network inference and integrating them with complementary data sources. The first part of the review describes methods to analyze one- or low-dimensional phenotypes like viability or reporter activity; the second part concentrates on high-dimensional phenotypes showing global changes in cell morphology, transcriptome or proteome.Comment: Review based on ISMB 2009 tutorial; after two rounds of revisio

    Inferring dynamic genetic networks with low order independencies

    Full text link
    In this paper, we propose a novel inference method for dynamic genetic networks which makes it possible to face with a number of time measurements n much smaller than the number of genes p. The approach is based on the concept of low order conditional dependence graph that we extend here in the case of Dynamic Bayesian Networks. Most of our results are based on the theory of graphical models associated with the Directed Acyclic Graphs (DAGs). In this way, we define a minimal DAG G which describes exactly the full order conditional dependencies given the past of the process. Then, to face with the large p and small n estimation case, we propose to approximate DAG G by considering low order conditional independencies. We introduce partial qth order conditional dependence DAGs G(q) and analyze their probabilistic properties. In general, DAGs G(q) differ from DAG G but still reflect relevant dependence facts for sparse networks such as genetic networks. By using this approximation, we set out a non-bayesian inference method and demonstrate the effectiveness of this approach on both simulated and real data analysis. The inference procedure is implemented in the R package 'G1DBN' freely available from the CRAN archive

    Applying dynamic Bayesian networks to perturbed gene expression data

    Get PDF
    BACKGROUND: A central goal of molecular biology is to understand the regulatory mechanisms of gene transcription and protein synthesis. Because of their solid basis in statistics, allowing to deal with the stochastic aspects of gene expressions and noisy measurements in a natural way, Bayesian networks appear attractive in the field of inferring gene interactions structure from microarray experiments data. However, the basic formalism has some disadvantages, e.g. it is sometimes hard to distinguish between the origin and the target of an interaction. Two kinds of microarray experiments yield data particularly rich in information regarding the direction of interactions: time series and perturbation experiments. In order to correctly handle them, the basic formalism must be modified. For example, dynamic Bayesian networks (DBN) apply to time series microarray data. To our knowledge the DBN technique has not been applied in the context of perturbation experiments. RESULTS: We extend the framework of dynamic Bayesian networks in order to incorporate perturbations. Moreover, an exact algorithm for inferring an optimal network is proposed and a discretization method specialized for time series data from perturbation experiments is introduced. We apply our procedure to realistic simulations data. The results are compared with those obtained by standard DBN learning techniques. Moreover, the advantages of using exact learning algorithm instead of heuristic methods are analyzed. CONCLUSION: We show that the quality of inferred networks dramatically improves when using data from perturbation experiments. We also conclude that the exact algorithm should be used when it is possible, i.e. when considered set of genes is small enough
    corecore