2,061 research outputs found

    Inferring ongoing human activities based on recurrent self-organizing map trajectory

    Get PDF
    Automatically inferring ongoing activities is to enable the early recognition of unfinished activities, which is quite meaningful for applications, such as online human-machine interaction and security monitoring. State-of-the-art methods use the spatio-temporal interest point (STIP) based features as the low-level video description to handle complex scenes. While the existing problem is that typical bag-of-visual words (BoVW) focuses on the statistical distribution of features but ignores the inherent contexts in activity sequences, resulting in low discrimination when directly dealing with limited observations. To solve this problem, the Recurrent Self-Organizing Map (RSOM), which was designed to process sequential data, is novelly adopted in this paper for the high-level representation of ongoing human activities. The innovation lies that the currently observed features and their spatio-temporal contexts are encoded in a trajectory of the pre-trained RSOM units. Additionally, a combination of Dynamic Time Warping (DTW) distance and Edit distance, named DTW-E, is specially proposed to measure the structural dissimilarity between RSOM trajectories. Two real-world datasets with markedly different characteristics, complex scenes and inter-class ambiguities, serve as sources of data for evaluation. Experimental results based on kNN classifiers confirm that our approach can infer ongoing human activities with high accuracies.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000346352700008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Computer Science, Artificial IntelligenceCPCI-S(ISTP)

    Predictive Coding for Dynamic Visual Processing: Development of Functional Hierarchy in a Multiple Spatio-Temporal Scales RNN Model

    Get PDF
    The current paper proposes a novel predictive coding type neural network model, the predictive multiple spatio-temporal scales recurrent neural network (P-MSTRNN). The P-MSTRNN learns to predict visually perceived human whole-body cyclic movement patterns by exploiting multiscale spatio-temporal constraints imposed on network dynamics by using differently sized receptive fields as well as different time constant values for each layer. After learning, the network becomes able to proactively imitate target movement patterns by inferring or recognizing corresponding intentions by means of the regression of prediction error. Results show that the network can develop a functional hierarchy by developing a different type of dynamic structure at each layer. The paper examines how model performance during pattern generation as well as predictive imitation varies depending on the stage of learning. The number of limit cycle attractors corresponding to target movement patterns increases as learning proceeds. And, transient dynamics developing early in the learning process successfully perform pattern generation and predictive imitation tasks. The paper concludes that exploitation of transient dynamics facilitates successful task performance during early learning periods.Comment: Accepted in Neural Computation (MIT press

    Human activity prediction by mapping grouplets to recurrent self-organizing map

    Get PDF
    Human activity prediction is defined as inferring the high-level activity category with the observation of only a few action units. It is very meaningful for time-critical applications such as emergency surveillance. For efficient prediction, we represent the ongoing human activity by using body part movements and taking full advantage of inherent sequentiality, then find the best matching activity template by a proper aligning measurement. In streaming videos, dense spatio-temporal interest points (STIPs) are first extracted as low-level descriptors for their high detection efficiency. Then, sparse grouplets, i.e., clustered point groups, are located to represent body part movements, for which we propose a scale-adaptive mean shift method that can determine grouplet number and scale for each frame adaptively. To learn the sequentiality, located grouplets are successively mapped to Recurrent Self-Organizing Map (RSOM), which has been pre-trained to preserve the temporal topology of grouplet sequences. During this mapping, a growing RSOM trajectory, which represents the ongoing activity, is obtained. For the special structure of RSOM trajectory, a combination of dynamic time warping (DTW) distance and edit distance, called DTW-E distance, is designed for similarity measurement. Four activity datasets with different characteristics such as complex scenes and inter-class ambiguities serve for performance evaluation. Experimental results confirm that our method is very efficient for predicting human activity and yields better performance than state-of-the-art works. (C) 2015 Elsevier B.V. All rights reserved.National Natural Science Foundation of China (NSFC) [61340046]; National High Technology Research and Development Program of China (863 Program) [2006AA04Z247]; Scientific and Technical Innovation Commission of Shenzhen Municipality [JCYJ20120614152234873, JCYJ20130331144716089]; Specialized Research Fund for the Doctoral Program of Higher Education [20130001110011]SCI(E)[email protected]

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore