77,776 research outputs found

    Semantic Modelling for Product Line Engineering

    Get PDF
    The aim of our work is to present solutions and a methodical support for automated techniques and procedures in domain engineering, in particular for variability modeling. Our approach is based upon Semantic Modeling concepts, for which semantic description, representation patterns and inference mechanisms are defined. Thus, model-driven techniques enriched with semantics will allow flexibility and variability in representation means, reasoning power and the required analysis depth for the identification, interpretation and adaptation of artifact properties and qualities

    Latent Fisher Discriminant Analysis

    Full text link
    Linear Discriminant Analysis (LDA) is a well-known method for dimensionality reduction and classification. Previous studies have also extended the binary-class case into multi-classes. However, many applications, such as object detection and keyframe extraction cannot provide consistent instance-label pairs, while LDA requires labels on instance level for training. Thus it cannot be directly applied for semi-supervised classification problem. In this paper, we overcome this limitation and propose a latent variable Fisher discriminant analysis model. We relax the instance-level labeling into bag-level, is a kind of semi-supervised (video-level labels of event type are required for semantic frame extraction) and incorporates a data-driven prior over the latent variables. Hence, our method combines the latent variable inference and dimension reduction in an unified bayesian framework. We test our method on MUSK and Corel data sets and yield competitive results compared to the baseline approach. We also demonstrate its capacity on the challenging TRECVID MED11 dataset for semantic keyframe extraction and conduct a human-factors ranking-based experimental evaluation, which clearly demonstrates our proposed method consistently extracts more semantically meaningful keyframes than challenging baselines.Comment: 12 page

    Utilising semantic technologies for decision support in dementia care

    Get PDF
    The main objective of this work is to discuss our experience in utilising semantic technologies for building decision support in Dementia care systems that are based on the non-intrusive on the non-intrusive monitoring of the patient’s behaviour. Our approach adopts context-aware modelling of the patient’s condition to facilitate the analysis of the patient’s behaviour within the inhabited environment (movement and room occupancy patterns, use of equipment, etc.) with reference to the semantic knowledge about the patient’s condition (history of present of illness, dependable behaviour patterns, etc.). The reported work especially focuses on the critical role of the semantic reasoning engine in inferring medical advice, and by means of practical experimentation and critical analysis suggests important findings related to the methodology of deploying the appropriate semantic rules systems, and the dynamics of the efficient utilisation of complex event processing technology in order to the meet the requirements of decision support for remote healthcare systems

    Run-time risk management in adaptive ICT systems

    No full text
    We will present results of the SERSCIS project related to risk management and mitigation strategies in adaptive multi-stakeholder ICT systems. The SERSCIS approach involves using semantic threat models to support automated design-time threat identification and mitigation analysis. The focus of this paper is the use of these models at run-time for automated threat detection and diagnosis. This is based on a combination of semantic reasoning and Bayesian inference applied to run-time system monitoring data. The resulting dynamic risk management approach is compared to a conventional ISO 27000 type approach, and validation test results presented from an Airport Collaborative Decision Making (A-CDM) scenario involving data exchange between multiple airport service providers

    Deep Reinforcement Learning-based Image Captioning with Embedding Reward

    Full text link
    Image captioning is a challenging problem owing to the complexity in understanding the image content and diverse ways of describing it in natural language. Recent advances in deep neural networks have substantially improved the performance of this task. Most state-of-the-art approaches follow an encoder-decoder framework, which generates captions using a sequential recurrent prediction model. However, in this paper, we introduce a novel decision-making framework for image captioning. We utilize a "policy network" and a "value network" to collaboratively generate captions. The policy network serves as a local guidance by providing the confidence of predicting the next word according to the current state. Additionally, the value network serves as a global and lookahead guidance by evaluating all possible extensions of the current state. In essence, it adjusts the goal of predicting the correct words towards the goal of generating captions similar to the ground truth captions. We train both networks using an actor-critic reinforcement learning model, with a novel reward defined by visual-semantic embedding. Extensive experiments and analyses on the Microsoft COCO dataset show that the proposed framework outperforms state-of-the-art approaches across different evaluation metrics

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
    • …
    corecore