16,514 research outputs found

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    The Augmented Synthetic Control Method

    Full text link
    The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit in panel data settings. The "synthetic control" is a weighted average of control units that balances the treated unit's pre-treatment outcomes as closely as possible. A critical feature of the original proposal is to use SCM only when the fit on pre-treatment outcomes is excellent. We propose Augmented SCM as an extension of SCM to settings where such pre-treatment fit is infeasible. Analogous to bias correction for inexact matching, Augmented SCM uses an outcome model to estimate the bias due to imperfect pre-treatment fit and then de-biases the original SCM estimate. Our main proposal, which uses ridge regression as the outcome model, directly controls pre-treatment fit while minimizing extrapolation from the convex hull. This estimator can also be expressed as a solution to a modified synthetic controls problem that allows negative weights on some donor units. We bound the estimation error of this approach under different data generating processes, including a linear factor model, and show how regularization helps to avoid over-fitting to noise. We demonstrate gains from Augmented SCM with extensive simulation studies and apply this framework to estimate the impact of the 2012 Kansas tax cuts on economic growth. We implement the proposed method in the new augsynth R package

    Optimization bounds from the branching dual

    Full text link
    We present a general method for obtaining strong bounds for discrete optimization problems that is based on a concept of branching duality. It can be applied when no useful integer programming model is available, and we illustrate this with the minimum bandwidth problem. The method strengthens a known bound for a given problem by formulating a dual problem whose feasible solutions are partial branching trees. It solves the dual problem with a “worst-bound” local search heuristic that explores neighboring partial trees. After proving some optimality properties of the heuristic, we show that it substantially improves known combinatorial bounds for the minimum bandwidth problem with a modest amount of computation. It also obtains significantly tighter bounds than depth-first and breadth-first branching, demonstrating that the dual perspective can lead to better branching strategies when the object is to find valid bounds.Accepted manuscrip
    corecore