13 research outputs found

    Cyclotomic factors of the descent set polynomial

    Get PDF
    We introduce the notion of the descent set polynomial as an alternative way of encoding the sizes of descent classes of permutations. Descent set polynomials exhibit interesting factorization patterns. We explore the question of when particular cyclotomic factors divide these polynomials. As an instance we deduce that the proportion of odd entries in the descent set statistics in the symmetric group S_n only depends on the number on 1's in the binary expansion of n. We observe similar properties for the signed descent set statistics.Comment: 21 pages, revised the proof of the opening result and cleaned up notatio

    The Tchebyshev transforms of the first and second kind

    Full text link
    We give an in-depth study of the Tchebyshev transforms of the first and second kind of a poset, recently discovered by Hetyei. The Tchebyshev transform (of the first kind) preserves desirable combinatorial properties, including Eulerianess (due to Hetyei) and EL-shellability. It is also a linear transformation on flag vectors. When restricted to Eulerian posets, it corresponds to the Billera, Ehrenborg and Readdy omega map of oriented matroids. One consequence is that nonnegativity of the cd-index is maintained. The Tchebyshev transform of the second kind is a Hopf algebra endomorphism on the space of quasisymmetric functions QSym. It coincides with Stembridge's peak enumerator for Eulerian posets, but differs for general posets. The complete spectrum is determined, generalizing work of Billera, Hsiao and van Willigenburg. The type B quasisymmetric function of a poset is introduced. Like Ehrenborg's classical quasisymmetric function of a poset, this map is a comodule morphism with respect to the quasisymmetric functions QSym. Similarities among the omega map, Ehrenborg's r-signed Birkhoff transform, and the Tchebyshev transforms motivate a general study of chain maps. One such occurrence, the chain map of the second kind, is a Hopf algebra endomorphism on the quasisymmetric functions QSym and is an instance of Aguiar, Bergeron and Sottile's result on the terminal object in the category of combinatorial Hopf algebras. In contrast, the chain map of the first kind is both an algebra map and a comodule endomorphism on the type B quasisymmetric functions BQSym.Comment: 33 page

    Polytopes, Hopf algebras and Quasi-symmetric functions

    Full text link
    In this paper we use the technique of Hopf algebras and quasi-symmetric functions to study the combinatorial polytopes. Consider the free abelian group P\mathcal{P} generated by all combinatorial polytopes. There are two natural bilinear operations on this group defined by a direct product ×\times and a join ⋇\divideontimes of polytopes. (P,×)(\mathcal{P},\times) is a commutative associative bigraded ring of polynomials, and RP=(Z∅⊕P,⋇)\mathcal{RP}=(\mathbb Z\varnothing\oplus\mathcal{P},\divideontimes) is a commutative associative threegraded ring of polynomials. The ring RP\mathcal{RP} has the structure of a graded Hopf algebra. It turns out that P\mathcal{P} has a natural Hopf comodule structure over RP\mathcal{RP}. Faces operators dkd_k that send a polytope to the sum of all its (n−k)(n-k)-dimensional faces define on both rings the Hopf module structures over the universal Leibnitz-Hopf algebra Z\mathcal{Z}. This structure gives a ring homomorphism \R\to\Qs\otimes\R, where R\R is P\mathcal{P} or RP\mathcal{RP}. Composing this homomorphism with the characters Pn→αnP^n\to\alpha^n of P\mathcal{P}, Pn→αn+1P^n\to\alpha^{n+1} of RP\mathcal{RP}, and with the counit we obtain the ring homomorphisms f\colon\mathcal{P}\to\Qs[\alpha], f_{\mathcal{RP}}\colon\mathcal{RP}\to\Qs[\alpha], and \F^*:\mathcal{RP}\to\Qs, where FF is the Ehrenborg transformation. We describe the images of these homomorphisms in terms of functional equations, prove that these images are rings of polynomials over Q\mathbb Q, and find the relations between the images, the homomorphisms and the Hopf comodule structures. For each homomorphism f,  fRPf,\;f_{\mathcal{RP}}, and \F the images of two polytopes coincide if and only if they have equal flag ff-vectors. Therefore algebraic structures on the images give the information about flag ff-vectors of polytopes.Comment: 61 page
    corecore