14,758 research outputs found

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Inference, Learning, and Population Size: Projectivity for SRL Models

    Full text link
    A subtle difference between propositional and relational data is that in many relational models, marginal probabilities depend on the population or domain size. This paper connects the dependence on population size to the classic notion of projectivity from statistical theory: Projectivity implies that relational predictions are robust with respect to changes in domain size. We discuss projectivity for a number of common SRL systems, and identify syntactic fragments that are guaranteed to yield projective models. The syntactic conditions are restrictive, which suggests that projectivity is difficult to achieve in SRL, and care must be taken when working with different domain sizes

    Logical Reduction of Metarules

    Get PDF
    International audienceMany forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction, which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times

    A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams

    Full text link
    Unlabelled data appear in many domains and are particularly relevant to streaming applications, where even though data is abundant, labelled data is rare. To address the learning problems associated with such data, one can ignore the unlabelled data and focus only on the labelled data (supervised learning); use the labelled data and attempt to leverage the unlabelled data (semi-supervised learning); or assume some labels will be available on request (active learning). The first approach is the simplest, yet the amount of labelled data available will limit the predictive performance. The second relies on finding and exploiting the underlying characteristics of the data distribution. The third depends on an external agent to provide the required labels in a timely fashion. This survey pays special attention to methods that leverage unlabelled data in a semi-supervised setting. We also discuss the delayed labelling issue, which impacts both fully supervised and semi-supervised methods. We propose a unified problem setting, discuss the learning guarantees and existing methods, explain the differences between related problem settings. Finally, we review the current benchmarking practices and propose adaptations to enhance them
    corecore