159 research outputs found

    A System for Induction of Oblique Decision Trees

    Full text link
    This article describes a new system for induction of oblique decision trees. This system, OC1, combines deterministic hill-climbing with two forms of randomization to find a good oblique split (in the form of a hyperplane) at each node of a decision tree. Oblique decision tree methods are tuned especially for domains in which the attributes are numeric, although they can be adapted to symbolic or mixed symbolic/numeric attributes. We present extensive empirical studies, using both real and artificial data, that analyze OC1's ability to construct oblique trees that are smaller and more accurate than their axis-parallel counterparts. We also examine the benefits of randomization for the construction of oblique decision trees.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    Decision support methods in diabetic patient management by insulin administration neural network vs. induction methods for knowledge classification

    Get PDF
    Diabetes mellitus is now recognised as a major worldwide public health problem. At present, about 100 million people are registered as diabetic patients. Many clinical, social and economic problems occur as a consequence of insulin-dependent diabetes. Treatment attempts to prevent or delay complications by applying ‘optimal’ glycaemic control. Therefore, there is a continuous need for effective monitoring of the patient. Given the popularity of decision tree learning algorithms as well as neural networks for knowledge classification which is further used for decision support, this paper examines their relative merits by applying one algorithm from each family on a medical problem; that of recommending a particular diabetes regime. For the purposes of this study, OC1 a descendant of Quinlan’s ID3 algorithm was chosen as decision tree learning algorithm and a generating shrinking algorithm for learning arbitrary classifications as a neural network algorithm. These systems were trained on 646 cases derived from two countries in Europe and were tested on 100 cases which were different from the original 646 cases

    Differential Evolution Algorithm in the Construction of Interpretable Classification Models

    Get PDF
    In this chapter, the application of a differential evolution-based approach to induce oblique decision trees (DTs) is described. This type of decision trees uses a linear combination of attributes to build oblique hyperplanes dividing the instance space. Oblique decision trees are more compact and accurate than the traditional univariate decision trees. On the other hand, as differential evolution (DE) is an efficient evolutionary algorithm (EA) designed to solve optimization problems with real-valued parameters, and since finding an optimal hyperplane is a hard computing task, this metaheuristic (MH) is chosen to conduct an intelligent search of a near-optimal solution. Two methods are described in this chapter: one implementing a recursive partitioning strategy to find the most suitable oblique hyperplane of each internal node of a decision tree, and the other conducting a global search of a near-optimal oblique decision tree. A statistical analysis of the experimental results suggests that these methods show better performance as decision tree induction procedures in comparison with other supervised learning approaches
    • …
    corecore