Diabetes mellitus is now recognised as a major worldwide
public health problem. At present, about 100
million people are registered as diabetic patients. Many
clinical, social and economic problems occur as a
consequence of insulin-dependent diabetes. Treatment
attempts to prevent or delay complications by applying
‘optimal’ glycaemic control. Therefore, there is a
continuous need for effective monitoring of the patient.
Given the popularity of decision tree learning
algorithms as well as neural networks for knowledge
classification which is further used for decision
support, this paper examines their relative merits by
applying one algorithm from each family on a medical
problem; that of recommending a particular diabetes
regime. For the purposes of this study, OC1 a
descendant of Quinlan’s ID3 algorithm was chosen as
decision tree learning algorithm and a generating
shrinking algorithm for learning arbitrary
classifications as a neural network algorithm. These
systems were trained on 646 cases derived from two
countries in Europe and were tested on 100 cases
which were different from the original 646 cases