305 research outputs found

    Methods and criteria for performance analysis of multiantenna systems in mobile communications

    Get PDF
    Multiple-input multiple-output (MIMO) technique is one of the most promising solutions for increasing reliability and spectral efficiency of the radio connection in future mobile communication systems. The performance potential of MIMO systems is well established from theoretical point of view. However, much effort is still needed in the experimental verification of those systems using realistic antennas and channels. It is widely accepted that the antenna properties are of significant importance regarding the performance of single-input single-output (SISO) systems. However, the effect of the antennas on MIMO systems has not been thoroughly studied. Due to the complexity of MIMO systems, evaluation of MIMO antennas becomes increasingly cumbersome and time-consuming process in comparison to simpler systems. In the first part of this work an advanced antenna evaluation technique called experimental plane-wave based method (EPWBM) is generalized and validated to cover MIMO systems. This work is the extension of the previous work where the method has been used in the analysis of SISO systems. The EPWBM is based on the measured or simulated complex 3-D radiation patterns of the antennas and measured directional radio channel data. The EPWBM simplifies antenna evaluation process in comparison to traditional means since the same channel library can be utilized in the evaluation of several antenna systems without performing the same measurements for each prototype antennas separately. It is verified that the EPWBM is sufficiently reliable in comparing the performance of prototype antennas. In the second part of the work new quality factors for MIMO system evaluation enclosing traditional systems as special cases have been developed. The MIMO channel correlation matrix is formulated so that it reveals the ability of MIMO antenna systems to transfer signal power from a transmitter to a receiver and to utilize parallel spatial channels. It is also verified that correct normalization of the channel matrices is of significant importance in the MIMO antenna evaluation. This approach gives comprehensive framework for MIMO antenna evaluation, which takes into account both realistic antenna and channel properties. In the last part of the work insight into the performance of different antennas in different signal propagation environments is given. The performance of the antennas depends on the signal-to-noise-ratio and on the outage probability level considered. Although MIMO systems are based on the utilization of parallel spatial channels, the capability of the system to transfer signal power plays a significant role especially with small MIMO systems. In the realistic dynamic channels the capacity variation is larger than in the ideal channels, which are based on the identically and independently distributed (iid) channel assumption. Large performance variations occur in the realistic channels with directive antennas, when antennas are rotated in the usage environment, whereas omnidirectional ones are more robust but are difficult to realize in practice. The largest differences between the antennas are found at the low outage probability levels due to different radiation properties of the antennas. The systems with the cross-polarized antennas have smaller eigenvalue dispersion and are more robust in performance for the variations of the channel than the systems with co-polarized antennas. On the other hand, the co-polarized antennas possess better capability to transfer signal power and are more robust in performance for the antenna array orientation. From practical point of view, the dual-polarized antennas seem to be the most feasible candidates to be used in MIMO antenna systems due to compact structure, and indoor seems to be the most suitable for MIMO applications due to typically scatter-rich channel.Multiple-input multiple-output (MIMO) tekniika on yksi lupaavimmista ratkaisuista lisätä radioyhteyden luotettavuutta ja spektritehokkuutta tulevaisuuden matkaviestinjärjestelmissä. MIMO järjestelmien suorituskykypotentiaali on teoreettisesti todistettu. Paljon työtä tarvitaan kuitenkin vielä kokeelliseen järjestelmätestaukseen käyttäen realistisia antenneja ja kanavia. On laajasti hyväksyttyä että antennien ominaisuudet ovat merkityksellisiä single-input single-output (SISO) järjestelmien suorituskyvyn kannalta. Antennien vaikutusta MIMO-järjestelmiin ei ole kuitenkaan perusteellisesti tutkittu. MIMO-järjestelmien lisääntyneestä monimutkaisuudesta johtuen, verrattuna yksinkertaisempiin järjestelmiin, MIMO antennien suorituskyvyn arviointi hankaloituu ja vie enemmän aikaa. Työn ensimmäisessä osassa uusi antennien arviointitekniikka nimeltään kokeellinen tasoaaltoihin perustuva menetelmä (EPWBM) on yleistetty käsittämään MIMO järjestelmät ja sen tarkkuus on arvioitu. Tämä työ on laajennus aikaisempaan työhön jossa menetelmää on käytetty SISO-järjestelmien arviointiin. EPWBM perustuu mitattuihin tai simuloituihin antennien kompleksisiin 3-D suuntakuvioihin ja mitattuun suuntatiedon sisältämään kanavadataan. EPWBM yksinkertaistaa antennin suorituskyvyn arviointia perinteisiin menetelmiin verrattuna, koska sama kanavamittausaineisto voidaan hyödyntää usamman antennisysteemin arvioinnissa tekemättä samoja mittauksia jokaiselle antenniprototyypille erikseen. On osoitettu että EPWBM on suhteellisen luotettava prototyyppiantennien suorituskyvyn vertailussa. Työn toisessa osassa on kehitetty uusia hyvyyslukuja MIMO-järjestelmien suorituskyvyn arviointiin sisältäen perinteiset järjestelmät erikoistapauksina. MIMO-kanavamatriisi esitetään siten että se paljastaa MIMO-antennijärjestelmien kyvyn siirtää signaalitehoa lähettimen ja vastaanottimen välillä ja hyödyntää rinnakkaisia kanavia. On myös todistettu että oikeanlainen kanavamatriisien normalisointi on erittäin merkittävää MIMO-antennivertailussa. Tämä lähestymistapa antaa kattavat puitteet MIMO-antennien suorituskyvyn arviointiin ottaen huomioon todelliset antennien ja kanavan ominaisuudet. Työn viimeisessä osassa annetaan käsitys erilaisten antennien suorituskyvystä erilaisissa signaalin etenemisympäristöissä. Antennien suorituskyky riippuu signaalikohinasuhteesta ja tarkasteltavan signaalin luotettavuustasosta. Vaikka MIMO-järjestelmät perustuvat rinnakkaisten kanavien hyödyntämiseen järjestelmän signaalitehon siirto-ominaisuudet ovat merkittäviä erityisesti pienillä MIMO järjestelmillä. Realistisissa dynaamisissa kanavissa kapasiteetinvaihtelu on suurempaa kuin ideaalisissa kanavissa jotka perustuvat oletukseen että signaalit ovat riippumattomasti ja identtisesti jakautuneita (iid). Suurta suorituskykyn vaihtelua esiintyy realistissa kanavissa suuntaavilla antenneilla, kun antenneja pyöritetään käyttöympäristössä, kun taas ympärisäteilevät antennit olisivat jäykempiä suorituskyvyn kannalta mutta käytännössä vaikeampia toteuttaa. Suuremmat erot antennien välillä on löydettävissä matalalta signaalin luotettavuustasolta johtuen antennien erilaisista säteilyominaisuuksista. Kaksipolarisaatioantennijärjestelmillä on pienempi ominaisarvohaje ja niiden suorituskyky on jäykempi kanavan vaihteluille kuin yksipolarisaatioantennijärjestelmä. Toisaalta yksipolarisaatioantenneilla on paremmat signaalitehon siirto-ominaisuudet ja suorituskyky vaihtelee vähemmän antennin katselusuunnan funktiona. Käytännön näkökulmasta katsoen kaksipolarisaatioantennit näyttävät olevan kaikkein toteuttamiskelpoisin vaihtoehto käytettäväksi MIMO-systeemeissä johtuen niiden kompaktista rakenteesta, ja sisätila näyttää olevan sopivin ympäristö MIMO-sovelluksiin johtuen tyypillisesti sirontarikkaasta kanavasta.reviewe

    Latest Progress in MIMO Antennas Design

    Get PDF

    Design and Evaluation of Compact Multi-antennas for Efficient MIMO Communications

    Get PDF
    The use of multi-antenna systems with multiple-input multiple-output (MIMO) technology will play a key role in providing high spectrum efficiency for next generation mobile communication systems. This thesis offers valuable insights on the design of compact multi-antennas for efficient MIMO communications. In the course of the thesis work, several novel six-port antenna designs have been proposed to simultaneously exploit all six possible degrees-of-freedom (DOFs) by means of various antenna diversity mechanisms (Paper I & II). Moreover, the thesis also examines the potential of using uncoupled matching networks to adaptively optimize compact multi-antenna systems to their dynamic usage environments (Paper III). Furthermore, a simple and intuitive metric is proposed for evaluating the performance of MIMO antennas when operating in the spatial multiplexing mode (Paper IV). Last but not least, cooperation among multi-antenna systems at all three sectors of a given cellular base station is shown to deliver significant benefit at sector edges (Paper V). The thesis with five included research papers extend the understanding of MIMO systems from an antenna and propagation perspective. It provides important guidelines in designing compact and efficient MIMO antennas in their usage environments. In Paper I, a fundamental question on the number of effective DOFs in a wireless channel is explored using two co-located six-port antenna arrays. The antenna elements of both arrays closely reproduce the desired characteristics of fundamental electric and magnetic dipoles, which can efficiently extract angle and polarization diversities from the wireless channel. In particular, one of the two array designs is by far the most electrically compact six-port antenna structure in the literature. Analysis of measured channel eigenvalues in a rich multi-path scattering environment shows that six eigenchannels are successfully attained for the purpose of spatial multiplexing. To study the potential of implementing different diversity mechanisms on a practical multi-port antenna, Paper II builds on an existing dielectric resonator antenna (DRA) to provide a compact six-port DRA array that jointly utilizes space, polarization and angle diversities. In order to fully substantiate the practicality of the DRA array for indoor MIMO applications, the compact DRA array together with two reference but much larger arrays were evaluated in an office scenario. The use of the compact DRA array at the receiver is shown to achieve comparable performance to that of the reference monopole array due to the DRA array's rich diversity characteristics. In Paper III, the study of uncoupled matching networks to counteract mutual coupling effects in multi-antenna systems is extended by allowing for unbalanced matching impedances. Numerical studies suggest that the unbalanced matching is especially effective for array topologies whose effective apertures can vary significantly with respect to the propagation channel. Moreover, it is also demonstrated that the unbalanced matching is capable of adapting the radiation patterns of the array elements to the dynamic propagation environment. Paper IV introduces multiplexing efficiency as a performance metric which defines the loss of efficiency in decibel when using a multi-antenna prototype under test to achieve the same multiplexing performance as that of an ideal array in the same propagation environment. Its unique features are both its simplicity and the valuable insights it offers with respect to the performance impacts of different antenna impairments in multi-antenna systems. In Paper V, intrasite cooperation among three 120°-sector, each with a cross-polarized antenna pair, is investigated in a measured urban macrocellular environment. The single-user capacity improvement is found to exceed 40% at the sector edges, where improvements are most needed. In addition, a simple simulation model is developed to analyze the respective impact of antennas and specific propagation mechanisms on the measured cooperative gain

    Polarization reconfigurable antennas for space limited multiple input multiple output system

    Get PDF
    Wireless communication undergoes rapid changes in recent years. More and more people are using modern communication services, thus increasing the need for higher capacity in transmission. One of the methods that is able to meet the demands is the use of multiple antennas at both link ends known as Multiple Input Multiple Output (MIMO) system. However, for the space limited MIMO system, it is relatively difficult to accomplish good performance by using conventional antennas. Therefore, to further improve the performance offered by MIMO, Polarization Reconfigurable Antennas (PRAs) can be adopted. The diversity in polarization can be exploited to increase channel capacity. Moreover, the use of PRAs can also provide savings in terms of space and cost by arranging orthogonal polarized together instead of two physically space separation antennas. Here, single and dual port PRAs are proposed. Two techniques are deployed to achieve the PRAs are slits perturbation (switches on the radiating patch) and alteration of the feeding network (switches on the ground plane). Switching mechanism (ideal and PIN diode) is introduced to reconfigure the polarization between left-hand circular polarizations, right-hand circular polarizations, or linear polarization, operating at wireless local area network frequency band (2.4 – 2.5 GHz). Furthermore, by exploiting the odd and even mode of the coplanar waveguide structure, dual ports PRAs are realized with the ability to produce orthogonal linear polarization (LP) and circular polarization (CP) modes simultaneously. Good measured port polarization isolations (S21) of -16.3 dB and -19 dB are obtained at the frequency of 2.45 GHz for configuration A1 (orthogonal LP) and A2 (orthogonal CP), respectively. The proposed PRAs are tested in 2 x 2 MIMO indoor environments to validate their performances by using scalar power correlation method when applied as receiver in both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Channel capacity improvement has been achieved for spatial diversity (92.9% for LOS and 185.9% for NLOS) and polarization diversity (40.7% for LOS and 57.9% for NLOS). The proposed antenna is highly potential to be adopted to enhance the performance of the MIMO system, especially in dealing with multipath environment and space limited applications

    Mutual coupling in MIMO systems

    Get PDF
    The drive towards greater efficiency in communications systems has led to the birth of many new technologies and considerable improvements in existing systems over the last 20 years. These developments have been underpinned by increasing demands for higher data speeds, capacity and reliability by end users on a global level. Wireless communications systems have witnessed rapid transformations with this regard. Numerous enhancements in data capacities have been the hallmark of these systems. One of the principal components in achieving improved performance in wireless systems is the antenna system. Single Input Single Output (SISO) antenna topologies have traditionally been employed in wireless links. As the demand for higher data rates have persisted various limitations have arisen. Multiple Input Multiple Output (MIMO) antenna topologies have provided promise of the desired system capacity and reliability. Since MIMO systems employ two or more antenna pairs simultaneously, the effects of mutual coupling become a significant consideration in the quest to achieve high system performance. Therefore a clear understanding of mutual coupling effects with varying conditions in necessary for practical purposes. A lot of work has already been done on this subject. This thesis shall seek to substantiate some fundamental evidence on the relationship between mutual coupling effects and antenna element separation. The procedure shall involve the use of proven computer aided design software to achieve this purpose. Microstrip antennas (used interchangeably with patch antennas), widely known for their efficacy in wireless communications applications will be used for the tests. Specifically the more common linearly polarized rectangular microstrip antenna shall be utilised

    Mutual coupling in MIMO systems

    Get PDF
    The drive towards greater efficiency in communications systems has led to the birth of many new technologies and considerable improvements in existing systems over the last 20 years. These developments have been underpinned by increasing demands for higher data speeds, capacity and reliability by end users on a global level. Wireless communications systems have witnessed rapid transformations with this regard. Numerous enhancements in data capacities have been the hallmark of these systems. One of the principal components in achieving improved performance in wireless systems is the antenna system. Single Input Single Output (SISO) antenna topologies have traditionally been employed in wireless links. As the demand for higher data rates have persisted various limitations have arisen. Multiple Input Multiple Output (MIMO) antenna topologies have provided promise of the desired system capacity and reliability. Since MIMO systems employ two or more antenna pairs simultaneously, the effects of mutual coupling become a significant consideration in the quest to achieve high system performance. Therefore a clear understanding of mutual coupling effects with varying conditions in necessary for practical purposes. A lot of work has already been done on this subject. This thesis shall seek to substantiate some fundamental evidence on the relationship between mutual coupling effects and antenna element separation. The procedure shall involve the use of proven computer aided design software to achieve this purpose. Microstrip antennas (used interchangeably with patch antennas), widely known for their efficacy in wireless communications applications will be used for the tests. Specifically the more common linearly polarized rectangular microstrip antenna shall be utilised

    Experimental characterization of the radio channel for systems with large bandwidth and multiple antennas

    Get PDF
    [SPA] Cada día son necesarias comunicaciones mejores y más eficientes, con mayores anchos de banda y mayores tasas de transferencias de datos. Por un lado los sistemas de múltiples antenas, MIMO, surgieron como una técnica para optimizar el uso de la potencia y el espectro. Por otro lado, los sistemas Ultra-Wideband, UWB, han ganado recientemente el interés de la comunidad científica por su gran ancho de banda combinado con su baja potencia de transmisión. A la hora de diseñar y testear nuevos dispositivos de comunicaciones inalámbricas, es esencial poseer un conocimiento preciso del canal de propagación por el que se propagan dichas señales. Esta tesis, se basa en el modelado del canal de propagación para sistemas de gran ancho de banda y múltiples antenas desde un punto de vista experimental. Primeramente se presentan las mejoras y desarrollos realizados en el ámbito de los sistemas de medida del canal, dado que es necesario disponer de equipos adecuados y precisos para realizar adecuadas medidas del canal. Seguidamente, se analiza el canal MIMO-UWB en interiores. Se realiza un análisis en profundidad de varios parámetros, especialmente parámetros de una antena como las pérdidas de propagación, el factor de polarización cruzada o la dispersión del retardo. Finalmente, la tesis particulariza el análisis del canal en un entorno especial como es el caso de túneles. Se realiza un análisis experimental de parámetros de una antena como multi antena para luego evaluar las prestaciones que pueden brindar varias técnicas de diversidad como es en el dominio de la frecuencia, la polarización, el espacio o el tiempo.[ENG] Wireless communications have become essential in our society [Rappaport, 1996], [Parsons, 2000]. Nowadays, people need to be connected everywhere and at any time, and demand faster and enhanced communications every day. New applications requires higher data rates and, therefore, higher bandwidths. On the one hand, Multiple-Input Multiple-Output (MIMO) systems were proposed as one solution to achieve higher data rates and optimize the use of the spectrum. On the other hand, more recently, systems with an ultra large bandwidth, and particularly Ultra-Wideband (UWB) systems, have gained the interest of the scientific community. Such interest is owing to the extremely high data rates offered and its possible coexistence with existing systems due to the its low transmitted power. However, this improvement in mobile communications involves the development and testing of new wireless communications systems. Precise knowledge of the radio channel is an essential issue to design this new devices and, thus, reach such improvement in wireless communications. In general, the modeling of the radio channel can be undertaken in two main ways: Theoretically, where the channel is characterized by means of simulations and theoretical approaches. - Experimentally, where the radio channel is characterized by means of the analysis of measurements carried out in real scenarios. This thesis is mainly focused on the experimental characterization of the radio channel for systems with large bandwidth and multiple antennas (MIMO). However, characterizing experimentally the MIMO wideband channel implies the availability of adequate and accurate channel sounders.Universidad Politécnica de CartagenaUniversité des Sciences et Technologies de Lille (USTL)Programa de doctorado en Tecnologías de la Información y Comunicacione

    Photonic techniques for indoor spatially-multiplexed wireless communication

    Get PDF
    corecore