176 research outputs found

    Algorithms leveraging smartphone sensing for analyzing explosion events

    Get PDF
    The increasing frequency of explosive disasters throughout the world in recent years have created a clear need for the systems to monitor for them continuously to improve the post-disaster emergency events such as rescue and recovery operations. Disasters both man-made and natural are unfortunate and not preferred, however monitoring them may be a lifesaving phenomenon in emergency scenarios. Dedicated sensors deployed in the public places and their associated networks to monitor such events may be inadequate and must be complemented for making the monitoring more pervasive and effective. In the recent past, modern smartphones with significant processing, networking and storage capabilities have become a rich source of mobile infrastructure empowering participatory sensing to address many problems in the area of pervasive computing. In the work presented in this dissertation, smartphone sensed data during disastrous scenarios is extensively studied, analyzed and algorithms were built for participatory sensing to address the problems, specifically in the context of Explosion -- Events which are of interest to the current study. This work presents description of the systems for assisting people by detecting, ranging and estimating intensity of the explosion events leveraging multi-modal smartphone sensors. This work also presents various challenges and opportunities in utilizing the capabilities of the sensors in smartphone for building such systems along with practical applications, limitations and future directions --Abstract, page iii

    Mulsemedia Communication Research Challenges for Metaverse in 6G Wireless Systems

    Full text link
    Although humans have five basic senses, sight, hearing, touch, smell, and taste, most multimedia systems in current systems only capture two of them, namely, sight and hearing. With the development of the metaverse and related technologies, there is a growing need for a more immersive media format that leverages all human senses. Multisensory media(Mulsemedia) that can stimulate multiple senses will play a critical role in the near future. This paper provides an overview of the history, background, use cases, existing research, devices, and standards of mulsemedia. Emerging mulsemedia technologies such as Extended Reality (XR) and Holographic-Type Communication (HTC) are introduced. Additionally, the challenges in mulsemedia research from the perspective of wireless communication and networking are discussed. The potential of 6G wireless systems to address these challenges is highlighted, and several research directions that can advance mulsemedia communications are identified

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    HUC-HISF: A Hybrid Intelligent Security Framework for Human-centric Ubiquitous Computing

    Get PDF
    制度:新 ; 報告番号:乙2336号 ; 学位の種類:博士(人間科学) ; 授与年月日:2012/1/18 ; 早大学位記番号:新584

    Individualisation avancée des services IPTV

    Get PDF
    Le monde de la TV est en cours de transformation de la télévision analogique à la télévision numérique, qui est capable de diffuser du contenu de haute qualité, offrir aux consommateurs davantage de choix, et rendre l'expérience de visualisation plus interactive. IPTV (Internet Protocol TV) présente une révolution dans la télévision numérique dans lequel les services de télévision numérique sont fournis aux utilisateurs en utilisant le protocole Internet (IP) au dessus d une connexion haut débit. Les progrès de la technologie IPTV permettra donc un nouveau modèle de fourniture de services. Les fonctions offertes aux utilisateurs leur permettent de plus en plus d autonomie et de plus en plus de choix. Il en est notamment ainsi de services de type nTS (pour network Time Shifting en anglais) qui permettent à un utilisateur de visionner un programme de télévision en décalage par rapport à sa programmation de diffusion, ou encore des services de type nPVR (pour network Personal Video Recorder en anglais) qui permettent d enregistrer au niveau du réseau un contenu numérique pour un utilisateur. D'autre part, l'architecture IMS proposée dans NGN fournit une architecture commune pour les services IPTV. Malgré les progrès rapides de la technologie de télévision interactive (comprenant notamment les technologies IPTV et NGN), la personnalisation de services IPTV en est encore à ses débuts. De nos jours, la personnalisation des services IPTV se limite principalement à la recommandation de contenus et à la publicité ciblée. Ces services ne sont donc pas complètement centrés sur l utilisateur, alors que choisir manuellement les canaux de diffusion et les publicités désirées peut représenter une gêne pour l utilisateur. L adaptation des contenus numériques en fonction de la capacité des réseaux et des dispositifs utilisés n est pas encore prise en compte dans les implémentations actuelles. Avec le développement des technologies numériques, les utilisateurs sont amenés à regarder la télévision non seulement sur des postes de télévision, mais également sur des smart phones, des tablettes digitales, ou encore des PCs. En conséquence, personnaliser les contenus IPTV en fonction de l appareil utilisé pour regarder la télévision, en fonction des capacités du réseau et du contexte de l utilisateur représente un défi important. Cette thèse présente des solutions visant à améliorer la personnalisation de services IPTV à partir de trois aspects: 1) Nouvelle identification et authentification pour services IPTV. 2) Nouvelle architecture IPTV intégrée et comportant un système de sensibilité au contexte pour le service de personnalisation. 3) Nouveau service de recommandation de contenu en fonction des préférences de l utilisateur et aussi des informations contextesInternet Protocol TV (IPTV) delivers television content to users over IP-based network. Different from the traditional TV services, IPTV platforms provide users with large amount of multimedia contents with interactive and personalized services, including the targeted advertisement, on-demand content, personal video recorder, and so on. IPTV is promising since it allows to satisfy users experience and presents advanced entertainment services. On the other hand, the Next Generation Network (NGN) approach in allowing services convergence (through for instance coupling IPTV with the IP Multimedia Subsystem (IMS) architecture or NGN Non-IMS architecture) enhances users experience and allows for more services personalization. Although the rapid advancement in interactive TV technology (including IPTV and NGN technologies), services personalization is still in its infancy, lacking the real distinguish of each user in a unique manner, the consideration of the context of the user (who is this user, what is his preferences, his regional area, location, ..) and his environment (characteristics of the users devices screen types, size, supported resolution, and networks available network types to be used by the user, available bandwidth, .. ) as well as the context of the service itself (content type and description, available format HD/SD , available language, ..) in order to provide the adequate personalized content for each user. This advanced IPTV services allows services providers to promote new services and open new business opportunities and allows network operators to make better utilization of network resources through adapting the delivered content according to the available bandwidth and to better meet the QoE (Quality of Experience) of clients. This thesis focuses on enhanced personalization for IPTV services following a user-centric context-aware approach through providing solutions for: i) Users identification during IPTV service access through a unique and fine-grained manner (different from the identification of the subscription which is the usual current case) based on employing a personal identifier for each user which is a part of the user context information. ii) Context-Aware IPTV service through proposing a context-aware system on top of the IPTV architecture for gathering in a dynamic and real-time manner the different context information related to the user, devices, network and service. The context information is gathered throughout the whole IPTV delivery chain considering the user domain, network provider domain, and service/content provider domain. The proposed context-aware system allows monitoring user s environment (devices and networks status), interpreting user s requirements and making the user s interaction with the TV system dynamic and transparent. iii) Personalized recommendation and selection of IPTV content based on the different context information gathered and the personalization decision taken by the context-aware system (different from the current recommendation approach mainly based on matching content to users preferences) which in turn highly improves the users Quality of Experience (QoE) and enriching the offers of IPTV servicesEVRY-INT (912282302) / SudocSudocFranceF

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Performance analysis and application development of hybrid WiMAX-WiFi IP video surveillance systems

    Get PDF
    Traditional Closed Circuit Television (CCTV) analogue cameras installed in buildings and other areas of security interest necessitates the use of cable lines. However, analogue systems are limited by distance; and storing analogue data requires huge space or bandwidth. Wired systems are also prone to vandalism, they cannot be installed in a hostile terrain and in heritage sites, where cabling would distort original design. Currently, there is a paradigm shift towards wireless solutions (WiMAX, Wi-Fi, 3G, 4G) to complement and in some cases replace the wired system. A wireless solution of the Fourth-Generation Surveillance System (4GSS) has been proposed in this thesis. It is a hybrid WiMAX-WiFi video surveillance system. The performance analysis of the hybrid WiMAX-WiFi is compared with the conventional WiMAX surveillance models. The video surveillance models and the algorithm that exploit the advantages of both WiMAX and Wi-Fi for scenarios of fixed and mobile wireless cameras have been proposed, simulated and compared with the mathematical/analytical models. The hybrid WiMAX-WiFi video surveillance model has been extended to include a Wireless Mesh configuration on the Wi-Fi part, to improve the scalability and reliability. A performance analysis for hybrid WiMAX-WiFi system with an appropriate Mobility model has been considered for the case of mobile cameras. A security software application for mobile smartphones that sends surveillance images to either local or remote servers has been developed. The developed software has been tested, evaluated and deployed in low bandwidth Wi-Fi wireless network environments. WiMAX is a wireless metropolitan access network technology that provides broadband services to the connected customers. Major modules and units of WiMAX include the Customer Provided Equipment (CPE), the Access Service Network (ASN) which consist one or more Base Stations (BS) and the Connectivity Service Network (CSN). Various interfaces exist between each unit and module. WiMAX is based on the IEEE 802.16 family of standards. Wi-Fi, on the other hand, is a wireless access network operating in the local area network; and it is based on the IEEE 802.11 standards
    corecore