83,776 research outputs found

    The Opportunistic Transmission of Wireless Worms between Mobile Devices

    Full text link
    The ubiquity of portable wireless-enabled computing and communications devices has stimulated the emergence of malicious codes (wireless worms) that are capable of spreading between spatially proximal devices. The potential exists for worms to be opportunistically transmitted between devices as they move around, so human mobility patterns will have an impact on epidemic spread. The scenario we address in this paper is proximity attacks from fleetingly in-contact wireless devices with short-range communication range, such as Bluetooth-enabled smart phones. An individual-based model of mobile devices is introduced and the effect of population characteristics and device behaviour on the outbreak dynamics is investigated. We show through extensive simulations that in the above scenario the resulting mass-action epidemic models remain applicable provided the contact rate is derived consistently from the underlying mobility model. The model gives useful analytical expressions against which more refined simulations of worm spread can be developed and tested.Comment: Submitted for publicatio

    Individual-based lattice model for spatial spread of epidemics

    Full text link
    We present a lattice gas cellular automaton (LGCA) to study spatial and temporal dynamics of an epidemic of SIR (susceptible-infected-removed) type. The automaton is fully discrete, i.e. space, time and number of individuals are discrete variables. The automaton can be applied to study spread of epidemics in both human and animal populations. We investigate effects of spatial inhomogeneities in initial distribution of infected and vaccinated populations on the dynamics of epidemic of SIR type. We discuss vaccination strategies which differ only in spatial distribution of vaccinated individuals. Also, we derive an approximate, mean-field type description of the automaton, and discuss differences between the mean-field dynamics and the results of LGCA simulation.Comment: 13 pages, 5 figure

    Real-time growth rate for general stochastic SIR epidemics on unclustered networks

    Get PDF
    Networks have become an important tool for infectious disease epidemiology. Most previous theoretical studies of transmission network models have either considered simple Markovian dynamics at the individual level, or have focused on the invasion threshold and final outcome of the epidemic. Here, we provide a general theory for early real-time behaviour of epidemics on large configuration model networks (i.e. static and locally unclustered), in particular focusing on the computation of the Malthusian parameter that describes the early exponential epidemic growth. Analytical, numerical and Monte-Carlo methods under a wide variety of Markovian and non-Markovian assumptions about the infectivity profile are presented. Numerous examples provide explicit quantification of the impact of the network structure on the temporal dynamics of the spread of infection and provide a benchmark for validating results of large scale simulations.Comment: 45 pages, 8 figures, submitted to Mathematical Biosciences on 29/11/2014; Version 2: resubmitted on 15/04/2015; accepted on 17/04/2015. Changes: better explanations in introduction; restructured section 3.3 (3.3.3 added); section 6.3.1 added; more precise terminology; typos correcte

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider

    Persistence, extinction and spatio-temporal synchronization of SIRS cellular automata models

    Full text link
    Spatially explicit models have been widely used in today's mathematical ecology and epidemiology to study persistence and extinction of populations as well as their spatial patterns. Here we extend the earlier work--static dispersal between neighbouring individuals to mobility of individuals as well as multi-patches environment. As is commonly found, the basic reproductive ratio is maximized for the evolutionary stable strategy (ESS) on diseases' persistence in mean-field theory. This has important implications, as it implies that for a wide range of parameters that infection rate will tend maximum. This is opposite with present results obtained in spatial explicit models that infection rate is limited by upper bound. We observe the emergence of trade-offs of extinction and persistence on the parameters of the infection period and infection rate and show the extinction time having a linear relationship with respect to system size. We further find that the higher mobility can pronouncedly promote the persistence of spread of epidemics, i.e., the phase transition occurs from extinction domain to persistence domain, and the spirals' wavelength increases as the mobility increasing and ultimately, it will saturate at a certain value. Furthermore, for multi-patches case, we find that the lower coupling strength leads to anti-phase oscillation of infected fraction, while higher coupling strength corresponds to in-phase oscillation.Comment: 12page
    • …
    corecore