154,344 research outputs found
Indium substitution effect on the topological crystalline insulator family (PbSn)InTe: Topological and superconducting properties
Topological crystalline insulators (TCIs) have been of great interest in the
area of condensed matter physics. We investigated the effect of indium
substitution on the crystal structure and transport properties in the TCI
system (PbSn)InTe. For samples with a tin
concentration , the low-temperature resisitivities show a dramatic
variation as a function of indium concentration: with up to ~2% indium doping
the samples show weak-metallic behavior, similar to their parent compounds;
with ~6% indium doping, samples have true bulk-insulating resistivity and
present evidence for nontrivial topological surface states; with higher indium
doping levels, superconductivity was observed, with a transition temperature,
Tc, positively correlated to the indium concentration and reaching as high as
4.7 K. We address this issue from the view of bulk electronic structure
modified by the indium-induced impurity level that pins the Fermi level. The
current work summarizes the indium substitution effect on (Pb,Sn)Te, and
discusses the topological and superconducting aspects, which can be provide
guidance for future studies on this and related systems.Comment: 16 pages, 8 figure
Method for attaching a fused-quartz mirror to a conductive metal substrate
A fused-quartz mirror is attached to a conductive metal substrate by the following steps: tinning one surface of a fused-quartz mirror with a solder of substantially pure indium; tinning a metallic substrate with an indium eutectic alloy consisting essentially of indium bismuth, lead and tin having a melting point substantially below that of indium; heating the eutectic alloy to a temperature substantially above its melting point, but below that of the solder; floating the mirror into place, and subsequently cooling the alloy to a temperature substantially below its melting point
Competitive segregation of gallium and indium at heterophase Cu–MnO interfaces studied with transmission electron microscopy
This paper concentrates on the possible segregation of indium and gallium and competitive segregation of gallium and indium at atomically flat parallel {111}-oriented Cu–MnO interfaces. The segregation of gallium at Cu–MnO interfaces after introduction of gallium in the copper matrix of internally oxidized Cu–1 at.%Mn could be hardly detected with energy-dispersive spectrometry in a field emission gun transmission electron microscope. After a heat treatment to dissolve indium in the copper matrix, gallium has a weak tendency to segregate, that is 2.5 at.% Ga per monolayer at the interface compared with 2 at.% in the copper matrix. The striking result is that this gallium segregation is observable because it does not occur at the metal side of the interface but in the first two monolayers at the oxide side. Using the same heat treatment as for introducing indium in the sample, but without indium present, gallium segregates strongly at the oxide side of the Cu–MnO interface with a concentration of about 14.3 at.% in each monolayer of the two. In contrast, the presence of gallium has no influence on the segregation of indium towards Cu–MnO interfaces, because the outermost monolayer at the metal side of the interface contains 17.6 at.% In, that is similar to previously found results. This leads to the intriguing conclusions, firstly, that, in contrast with antimony and indium, gallium segregates at the oxide side of the interface and, secondly, that the presence of indium strongly hampers gallium segregation. The results from analytical transmission electron microscopy on gallium segregation are supported by high-resolution transmission electron microscopy observations.
Nothing moves a surface: vacancy mediated surface diffusion
We report scanning tunneling microscopy observations, which imply that all
atoms in a close-packed copper surface move frequently, even at room
temperature. Using a low density of embedded indium `tracer' atoms, we
visualize the diffusive motion of surface atoms. Surprisingly, the indium atoms
seem to make concerted, long jumps. Responsible for this motion is an ultra-low
density of surface vacancies, diffusing rapidly within the surface. This
interpretation is supported by a detailed analysis of the displacement
distribution of the indium atoms, which reveals a shape characteristic for the
vacancy mediated diffusion mechanism that we propose.Comment: 4 pages; for associated movie, see
http://www-lion.leidenuniv.nl/sections/cm/groups/interface/projects/therm
Annealing studies and electrical properties of SnS-based solar cells
Thin films of SnS (tin sulphide) were thermally evaporated onto glass and CdS/ITO (cadmium sulphide/indium tin oxide) coated glass substrates and then annealed in vacuum with the aim of optimising them for use in photovoltaic solar cell device structures. The chemical and physical properties of the layers were determined using scanning electron microscopy, energy dispersive x-ray analysis, x-ray diffraction, and transmittance versus wavelength measurements. “Superstrate configuration” devices were also made using indium tin oxide as the transparent conductive oxide, thermally evaporated cadmium sulphide as the buffer layer and evaporated copper/indium as the back contact material. Capacitance-voltage data are given for the fabricated devices. Capacitance- voltage, spectral response and I-V data are given for the fabricated devices
Analysis of acoustic emission during the melting of embedded indium particles in an aluminum matrix: a study of plastic strain accommodation during phase transformation
Acoustic emission is used here to study melting and solidification of
embedded indium particles in the size range of 0.2 to 3 um in diameter and to
show that dislocation generation occurs in the aluminum matrix to accommodate a
2.5% volume change. The volume averaged acoustic energy produced by indium
particle melting is similar to that reported for bainite formation upon
continuous cooling. A mechanism of prismatic loop generation is proposed to
accommodate the volume change and an upper limit to the geometrically necessary
increase in dislocation density is calculated as 4.1 x 10^9 cm^-2 for the
Al-17In alloy. Thermomechanical processing is also used to change the size and
distribution of the indium particles within the aluminum matrix. Dislocation
generation with accompanied acoustic emission occurs when the melting indium
particles are associated with grain boundaries or upon solidification where the
solid-liquid interfaces act as free surfaces to facilitate dislocation
generation. Acoustic emission is not observed for indium particles that require
super heating and exhibit elevated melting temperatures. The acoustic emission
work corroborates previously proposed relaxation mechanisms from prior internal
friction studies and that the superheat observed for melting of these
micron-sized particles is a result of matrix constraint.Comment: Presented at "Atomistic Effects in Migrating Interphase Interfaces -
Recent Progress and Future Study" TMS 201
Indium joints for cryogenic gravitational wave detectors
A viable technique for the preparation of highly thermal conductive joints between sapphire components in gravitational wave detectors is presented. The mechanical loss of such a joint was determined to be as low as 2 × 10−3 at 20 K and 2 × 10−2 at 300 K. The thermal noise performance of a typical joint is compared to the requirements of the Japanese gravitational wave detector, KAGRA. It is shown that using such an indium joint in the suspension system allows it to operate with low thermal noise. Additionally, results on the maximum amount of heat which can be extracted via indium joints are presented. It is found that sapphire parts, joined by means of indium, are able to remove the residual heat load in the mirrors of KAGRA
- …
