1,450 research outputs found

    Exploring missing heritability in neurodevelopmental disorders:Learning from regulatory elements

    Get PDF
    In this thesis, I aimed to solve part of the missing heritability in neurodevelopmental disorders, using computational approaches. Next to the investigations of a novel epilepsy syndrome and investigations aiming to elucidate the regulation of the gene involved, I investigated and prioritized genomic sequences that have implications in gene regulation during the developmental stages of human brain, with the goal to create an atlas of high confidence non-coding regulatory elements that future studies can assess for genetic variants in genetically unexplained individuals suffering from neurodevelopmental disorders that are of suspected genetic origin

    Exploring missing heritability in neurodevelopmental disorders:Learning from regulatory elements

    Get PDF

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Geometric Learning on Graph Structured Data

    Get PDF
    Graphs provide a ubiquitous and universal data structure that can be applied in many domains such as social networks, biology, chemistry, physics, and computer science. In this thesis we focus on two fundamental paradigms in graph learning: representation learning and similarity learning over graph-structured data. Graph representation learning aims to learn embeddings for nodes by integrating topological and feature information of a graph. Graph similarity learning brings into play with similarity functions that allow to compute similarity between pairs of graphs in a vector space. We address several challenging issues in these two paradigms, designing powerful, yet efficient and theoretical guaranteed machine learning models that can leverage rich topological structural properties of real-world graphs. This thesis is structured into two parts. In the first part of the thesis, we will present how to develop powerful Graph Neural Networks (GNNs) for graph representation learning from three different perspectives: (1) spatial GNNs, (2) spectral GNNs, and (3) diffusion GNNs. We will discuss the model architecture, representational power, and convergence properties of these GNN models. Specifically, we first study how to develop expressive, yet efficient and simple message-passing aggregation schemes that can go beyond the Weisfeiler-Leman test (1-WL). We propose a generalized message-passing framework by incorporating graph structural properties into an aggregation scheme. Then, we introduce a new local isomorphism hierarchy on neighborhood subgraphs. We further develop a novel neural model, namely GraphSNN, and theoretically prove that this model is more expressive than the 1-WL test. After that, we study how to build an effective and efficient graph convolution model with spectral graph filters. In this study, we propose a spectral GNN model, called DFNets, which incorporates a novel spectral graph filter, namely feedback-looped filters. As a result, this model can provide better localization on neighborhood while achieving fast convergence and linear memory requirements. Finally, we study how to capture the rich topological information of a graph using graph diffusion. We propose a novel GNN architecture with dynamic PageRank, based on a learnable transition matrix. We explore two variants of this GNN architecture: forward-euler solution and invariable feature solution, and theoretically prove that our forward-euler GNN architecture is guaranteed with the convergence to a stationary distribution. In the second part of this thesis, we will introduce a new optimal transport distance metric on graphs in a regularized learning framework for graph kernels. This optimal transport distance metric can preserve both local and global structures between graphs during the transport, in addition to preserving features and their local variations. Furthermore, we propose two strongly convex regularization terms to theoretically guarantee the convergence and numerical stability in finding an optimal assignment between graphs. One regularization term is used to regularize a Wasserstein distance between graphs in the same ground space. This helps to preserve the local clustering structure on graphs by relaxing the optimal transport problem to be a cluster-to-cluster assignment between locally connected vertices. The other regularization term is used to regularize a Gromov-Wasserstein distance between graphs across different ground spaces based on degree-entropy KL divergence. This helps to improve the matching robustness of an optimal alignment to preserve the global connectivity structure of graphs. We have evaluated our optimal transport-based graph kernel using different benchmark tasks. The experimental results show that our models considerably outperform all the state-of-the-art methods in all benchmark tasks

    Modern data analytics in the cloud era

    Get PDF
    Cloud Computing ist die dominante Technologie des letzten Jahrzehnts. Die Benutzerfreundlichkeit der verwalteten Umgebung in Kombination mit einer nahezu unbegrenzten Menge an Ressourcen und einem nutzungsabhängigen Preismodell ermöglicht eine schnelle und kosteneffiziente Projektrealisierung für ein breites Nutzerspektrum. Cloud Computing verändert auch die Art und Weise wie Software entwickelt, bereitgestellt und genutzt wird. Diese Arbeit konzentriert sich auf Datenbanksysteme, die in der Cloud-Umgebung eingesetzt werden. Wir identifizieren drei Hauptinteraktionspunkte der Datenbank-Engine mit der Umgebung, die veränderte Anforderungen im Vergleich zu traditionellen On-Premise-Data-Warehouse-Lösungen aufweisen. Der erste Interaktionspunkt ist die Interaktion mit elastischen Ressourcen. Systeme in der Cloud sollten Elastizität unterstützen, um den Lastanforderungen zu entsprechen und dabei kosteneffizient zu sein. Wir stellen einen elastischen Skalierungsmechanismus für verteilte Datenbank-Engines vor, kombiniert mit einem Partitionsmanager, der einen Lastausgleich bietet und gleichzeitig die Neuzuweisung von Partitionen im Falle einer elastischen Skalierung minimiert. Darüber hinaus führen wir eine Strategie zum initialen Befüllen von Puffern ein, die es ermöglicht, skalierte Ressourcen unmittelbar nach der Skalierung auszunutzen. Cloudbasierte Systeme sind von fast überall aus zugänglich und verfügbar. Daten werden häufig von zahlreichen Endpunkten aus eingespeist, was sich von ETL-Pipelines in einer herkömmlichen Data-Warehouse-Lösung unterscheidet. Viele Benutzer verzichten auf die Definition von strikten Schemaanforderungen, um Transaktionsabbrüche aufgrund von Konflikten zu vermeiden oder um den Ladeprozess von Daten zu beschleunigen. Wir führen das Konzept der PatchIndexe ein, die die Definition von unscharfen Constraints ermöglichen. PatchIndexe verwalten Ausnahmen zu diesen Constraints, machen sie für die Optimierung und Ausführung von Anfragen nutzbar und bieten effiziente Unterstützung bei Datenaktualisierungen. Das Konzept kann auf beliebige Constraints angewendet werden und wir geben Beispiele für unscharfe Eindeutigkeits- und Sortierconstraints. Darüber hinaus zeigen wir, wie PatchIndexe genutzt werden können, um fortgeschrittene Constraints wie eine unscharfe Multi-Key-Partitionierung zu definieren, die eine robuste Anfrageperformance bei Workloads mit unterschiedlichen Partitionsanforderungen bietet. Der dritte Interaktionspunkt ist die Nutzerinteraktion. Datengetriebene Anwendungen haben sich in den letzten Jahren verändert. Neben den traditionellen SQL-Anfragen für Business Intelligence sind heute auch datenwissenschaftliche Anwendungen von großer Bedeutung. In diesen Fällen fungiert das Datenbanksystem oft nur als Datenlieferant, während der Rechenaufwand in dedizierten Data-Science- oder Machine-Learning-Umgebungen stattfindet. Wir verfolgen das Ziel, fortgeschrittene Analysen in Richtung der Datenbank-Engine zu verlagern und stellen das Grizzly-Framework als DataFrame-zu-SQL-Transpiler vor. Auf dieser Grundlage identifizieren wir benutzerdefinierte Funktionen (UDFs) und maschinelles Lernen (ML) als wichtige Aufgaben, die von einer tieferen Integration in die Datenbank-Engine profitieren würden. Daher untersuchen und bewerten wir Ansätze für die datenbankinterne Ausführung von Python-UDFs und datenbankinterne ML-Inferenz.Cloud computing has been the groundbreaking technology of the last decade. The ease-of-use of the managed environment in combination with nearly infinite amount of resources and a pay-per-use price model enables fast and cost-efficient project realization for a broad range of users. Cloud computing also changes the way software is designed, deployed and used. This thesis focuses on database systems deployed in the cloud environment. We identify three major interaction points of the database engine with the environment that show changed requirements compared to traditional on-premise data warehouse solutions. First, software is deployed on elastic resources. Consequently, systems should support elasticity in order to match workload requirements and be cost-effective. We present an elastic scaling mechanism for distributed database engines, combined with a partition manager that provides load balancing while minimizing partition reassignments in the case of elastic scaling. Furthermore we introduce a buffer pre-heating strategy that allows to mitigate a cold start after scaling and leads to an immediate performance benefit using scaling. Second, cloud based systems are accessible and available from nearly everywhere. Consequently, data is frequently ingested from numerous endpoints, which differs from bulk loads or ETL pipelines in a traditional data warehouse solution. Many users do not define database constraints in order to avoid transaction aborts due to conflicts or to speed up data ingestion. To mitigate this issue we introduce the concept of PatchIndexes, which allow the definition of approximate constraints. PatchIndexes maintain exceptions to constraints, make them usable in query optimization and execution and offer efficient update support. The concept can be applied to arbitrary constraints and we provide examples of approximate uniqueness and approximate sorting constraints. Moreover, we show how PatchIndexes can be exploited to define advanced constraints like an approximate multi-key partitioning, which offers robust query performance over workloads with different partition key requirements. Third, data-centric workloads changed over the last decade. Besides traditional SQL workloads for business intelligence, data science workloads are of significant importance nowadays. For these cases the database system might only act as data delivery, while the computational effort takes place in data science or machine learning (ML) environments. As this workflow has several drawbacks, we follow the goal of pushing advanced analytics towards the database engine and introduce the Grizzly framework as a DataFrame-to-SQL transpiler. Based on this we identify user-defined functions (UDFs) and machine learning inference as important tasks that would benefit from a deeper engine integration and investigate approaches to push these operations towards the database engine

    Neurodevelopmental disorders:from genes to regulatory elements

    Get PDF

    Quantum-Inspired Machine Learning: a Survey

    Full text link
    Quantum-inspired Machine Learning (QiML) is a burgeoning field, receiving global attention from researchers for its potential to leverage principles of quantum mechanics within classical computational frameworks. However, current review literature often presents a superficial exploration of QiML, focusing instead on the broader Quantum Machine Learning (QML) field. In response to this gap, this survey provides an integrated and comprehensive examination of QiML, exploring QiML's diverse research domains including tensor network simulations, dequantized algorithms, and others, showcasing recent advancements, practical applications, and illuminating potential future research avenues. Further, a concrete definition of QiML is established by analyzing various prior interpretations of the term and their inherent ambiguities. As QiML continues to evolve, we anticipate a wealth of future developments drawing from quantum mechanics, quantum computing, and classical machine learning, enriching the field further. This survey serves as a guide for researchers and practitioners alike, providing a holistic understanding of QiML's current landscape and future directions.Comment: 56 pages, 13 figures, 8 table

    General Course Catalog [2022/23 academic year]

    Get PDF
    General Course Catalog, 2022/23 academic yearhttps://repository.stcloudstate.edu/undergencat/1134/thumbnail.jp

    Machine learning based anomaly detection for industry 4.0 systems.

    Get PDF
    223 p.This thesis studies anomaly detection in industrial systems using technologies from the Fourth Industrial Revolution (4IR), such as the Internet of Things, Artificial Intelligence, 3D Printing, and Augmented Reality. The goal is to provide tools that can be used in real-world scenarios to detect system anomalies, intending to improve production and maintenance processes. The thesis investigates the applicability and implementation of 4IR technology architectures, AI-driven machine learning systems, and advanced visualization tools to support decision-making based on the detection of anomalies. The work covers a range of topics, including the conception of a 4IR system based on a generic architecture, the design of a data acquisition system for analysis and modelling, the creation of ensemble supervised and semi-supervised models for anomaly detection, the detection of anomalies through frequency analysis, and the visualization of associated data using Visual Analytics. The results show that the proposed methodology for integrating anomaly detection systems in new or existing industries is valid and that combining 4IR architectures, ensemble machine learning models, and Visual Analytics tools significantly enhances theanomaly detection processes for industrial systems. Furthermore, the thesis presents a guiding framework for data engineers and end-users
    corecore