1,916 research outputs found

    Indexing query graphs to speedup graph query processing

    Get PDF
    Subgraph/supergraph queries although central to graph analytics, are costly as they entail the NP-Complete problem of subgraph isomorphism. We present a fresh solution, the novel principle of which is to acquire and utilize knowledge from the results of previously executed queries. Our approach, iGQ, encompasses two component subindexes to identify if a new query is a subgraph/supergraph of previously executed queries and stores related key information. iGQ comes with novel query processing and index space management algorithms, including graph replacement policies. The end result is a system that leads to significant reduction in the number of required subgraph isomorphism tests and speedups in query processing time. iGQ can be incorporated into any sub/supergraph query processing method and help improve performance. In fact, it is the only contribution that can speedup significantly both subgraph and supergraph query processing. We establish the principles of iGQ and formally prove its correctness. We have implemented iGQ and have incorporated it within three popular recent state of the art index-based graph query processing solutions. We evaluated its performance using real-world and synthetic graph datasets with different characteristics, and a number of query workloads, showcasing its benefits

    Hybrid algorithms for subgraph pattern queries in graph databases

    Get PDF
    Numerous methods have been proposed over the years for subgraph query processing, as it is central to graph analytics. Existing work is fragmented into two major categories. Methods in the filter-then-verify (FTV) category first construct an index of the DB graphs. Given a query, the index is used to filter out graphs that cannot contain the query. On the remaining graphs, a subgraph isomorphism algorithm is applied to verify whether each graph indeed contains the query. A second category of algorithms is mainly concerned with optimizing the Subgraph Isomorphism (SI) testing process (an NP-Complete problem) in order to find all occurrences of the query within each DB graph, also known as the matching problem. The current research trend is to totally dismiss FTV methods, because SI methods have been shown to enjoy much shorter query execution times and because of the alleged high costs of managing the DB graph index in FTV methods. Thus, a number of new SI methods are being proposed annually. In the current work, we initially study the performance of the latest SI algorithms over datasets consisting of a large number of graphs. With our study, we evaluate the algorithms’ performance and we provide comparison details with former studies. As a second step, we combine the powerful filtering of a top-performing FTV method, with the various SI methods, which leads to the best practice conclusion that SI and FTV shouldn’t be thought of as disjoint types of solutions, as their union achieves better results than any one of them individually. Specifically, we experimentally analyze and quantify the (positive) impact of including the essence of indexed FTV methods within SI methods, showing that query processing times can be significantly improved at modest additional memory costs. We show that these results hold over a variety of well-known SI methods and across several real and synthetic datasets. As such, hybrids of the type reveal a missing opportunity and a blind spot in related literature and trends

    PReaCH: A Fast Lightweight Reachability Index using Pruning and Contraction Hierarchies

    Full text link
    We develop the data structure PReaCH (for Pruned Reachability Contraction Hierarchies) which supports reachability queries in a directed graph, i.e., it supports queries that ask whether two nodes in the graph are connected by a directed path. PReaCH adapts the contraction hierarchy speedup techniques for shortest path queries to the reachability setting. The resulting approach is surprisingly simple and guarantees linear space and near linear preprocessing time. Orthogonally to that, we improve existing pruning techniques for the search by gathering more information from a single DFS-traversal of the graph. PReaCH-indices significantly outperform previous data structures with comparable preprocessing cost. Methods with faster queries need significantly more preprocessing time in particular for the most difficult instances

    Efficient Subgraph Matching on Billion Node Graphs

    Full text link
    The ability to handle large scale graph data is crucial to an increasing number of applications. Much work has been dedicated to supporting basic graph operations such as subgraph matching, reachability, regular expression matching, etc. In many cases, graph indices are employed to speed up query processing. Typically, most indices require either super-linear indexing time or super-linear indexing space. Unfortunately, for very large graphs, super-linear approaches are almost always infeasible. In this paper, we study the problem of subgraph matching on billion-node graphs. We present a novel algorithm that supports efficient subgraph matching for graphs deployed on a distributed memory store. Instead of relying on super-linear indices, we use efficient graph exploration and massive parallel computing for query processing. Our experimental results demonstrate the feasibility of performing subgraph matching on web-scale graph data.Comment: VLDB201

    Entropy-scaling search of massive biological data

    Get PDF
    Many datasets exhibit a well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here, we introduce a framework for similarity search based on characterizing a dataset's entropy and fractal dimension. We prove that searching scales in time with metric entropy (number of covering hyperspheres), if the fractal dimension of the dataset is low, and scales in space with the sum of metric entropy and information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three domains---high-throughput drug screening (Ammolite, 150x speedup), metagenomics (MICA, 3.5x speedup of DIAMOND [3,700x BLASTX]), and protein structure search (esFragBag, 10x speedup of FragBag). Our framework can be used to achieve "compressive omics," and the general theory can be readily applied to data science problems outside of biology.Comment: Including supplement: 41 pages, 6 figures, 4 tables, 1 bo

    GraphCache: A Caching System for Graph Queries

    Get PDF
    Graph query processing is essential for graph analytics, but can be very time-consuming as it entails the NP-Complete problem of subgraph isomorphism. Traditionally, caching plays a key role in expediting query processing. We thus put forth GraphCache (GC), the first full-edged caching system for general subgraph/supergraph queries. We contribute the overall system architecture and implementation of GC. We study a number of novel graph cache replacement policies and show that different policies win over different graph datasets and/or queries; we therefore contribute a novel hybrid graph replacement policy that is always the best or near-best performer. Moreover, we discover the related problem of cache pollution and propose a novel cache admission control mechanism to avoid cache pollution. Furthermore, we show that GC can be used as a front end, complementing any graph query processing method as a pluggable component. Currently, GC comes bundled with 3 top-performing filter-then-verify (FTV) subgraph query methods and 3 well-established direct subgraph-isomorphism (SI) algorithms - representing different categories of graph query processing research. Finally, we contribute a comprehensive performance evaluation of GC. We employ more than 6 million queries, generated using different workload generators, and executed against both real-world and synthetic graph datasets of different characteristics, quantifying the benefits and overheads, emphasizing the non-trivial lessons learned

    FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search

    Full text link
    We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for \textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search system for ultra-high dimensional datasets on a single machine, that does not require similarity computations and is tailored for high-performance computing platforms. By leveraging a LSH style randomized indexing procedure and combining it with several principled techniques, such as reservoir sampling, recent advances in one-pass minwise hashing, and count based estimations, we reduce the computational and parallelization costs of similarity search, while retaining sound theoretical guarantees. We evaluate FLASH on several real, high-dimensional datasets from different domains, including text, malicious URL, click-through prediction, social networks, etc. Our experiments shed new light on the difficulties associated with datasets having several million dimensions. Current state-of-the-art implementations either fail on the presented scale or are orders of magnitude slower than FLASH. FLASH is capable of computing an approximate k-NN graph, from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than 10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam dataset, using brute-force (n2Dn^2D), will require at least 20 teraflops. We provide CPU and GPU implementations of FLASH for replicability of our results
    • …
    corecore