5,675 research outputs found

    Graph-Based Shape Analysis Beyond Context-Freeness

    Full text link
    We develop a shape analysis for reasoning about relational properties of data structures. Both the concrete and the abstract domain are represented by hypergraphs. The analysis is parameterized by user-supplied indexed graph grammars to guide concretization and abstraction. This novel extension of context-free graph grammars is powerful enough to model complex data structures such as balanced binary trees with parent pointers, while preserving most desirable properties of context-free graph grammars. One strength of our analysis is that no artifacts apart from grammars are required from the user; it thus offers a high degree of automation. We implemented our analysis and successfully applied it to various programs manipulating AVL trees, (doubly-linked) lists, and combinations of both

    An approach to computing downward closures

    Full text link
    The downward closure of a word language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of any language is regular. While the downward closure appears to be a powerful abstraction, algorithms for computing a finite automaton for the downward closure of a given language have been established only for few language classes. This work presents a simple general method for computing downward closures. For language classes that are closed under rational transductions, it is shown that the computation of downward closures can be reduced to checking a certain unboundedness property. This result is used to prove that downward closures are computable for (i) every language class with effectively semilinear Parikh images that are closed under rational transductions, (ii) matrix languages, and (iii) indexed languages (equivalently, languages accepted by higher-order pushdown automata of order 2).Comment: Full version of contribution to ICALP 2015. Comments welcom

    Calibrating Generative Models: The Probabilistic Chomsky-SchĂĽtzenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    On Measuring Non-Recursive Trade-Offs

    Full text link
    We investigate the phenomenon of non-recursive trade-offs between descriptional systems in an abstract fashion. We aim at categorizing non-recursive trade-offs by bounds on their growth rate, and show how to deduce such bounds in general. We also identify criteria which, in the spirit of abstract language theory, allow us to deduce non-recursive tradeoffs from effective closure properties of language families on the one hand, and differences in the decidability status of basic decision problems on the other. We develop a qualitative classification of non-recursive trade-offs in order to obtain a better understanding of this very fundamental behaviour of descriptional systems

    An Efficient Probabilistic Context-Free Parsing Algorithm that Computes Prefix Probabilities

    Full text link
    We describe an extension of Earley's parser for stochastic context-free grammars that computes the following quantities given a stochastic context-free grammar and an input string: a) probabilities of successive prefixes being generated by the grammar; b) probabilities of substrings being generated by the nonterminals, including the entire string being generated by the grammar; c) most likely (Viterbi) parse of the string; d) posterior expected number of applications of each grammar production, as required for reestimating rule probabilities. (a) and (b) are computed incrementally in a single left-to-right pass over the input. Our algorithm compares favorably to standard bottom-up parsing methods for SCFGs in that it works efficiently on sparse grammars by making use of Earley's top-down control structure. It can process any context-free rule format without conversion to some normal form, and combines computations for (a) through (d) in a single algorithm. Finally, the algorithm has simple extensions for processing partially bracketed inputs, and for finding partial parses and their likelihoods on ungrammatical inputs.Comment: 45 pages. Slightly shortened version to appear in Computational Linguistics 2

    A Tractable Extension of Linear Indexed Grammars

    Get PDF
    It has been shown that Linear Indexed Grammars can be processed in polynomial time by exploiting constraints which make possible the extensive use of structure-sharing. This paper describes a formalism that is more powerful than Linear Indexed Grammar, but which can also be processed in polynomial time using similar techniques. The formalism, which we refer to as Partially Linear PATR manipulates feature structures rather than stacks.Comment: 8 pages LaTeX, uses eaclap.sty, to appear in EACL-9

    TuLiPA : towards a multi-formalism parsing environment for grammar engineering

    Get PDF
    In this paper, we present an open-source parsing environment (TĂĽbingen Linguistic Parsing Architecture, TuLiPA) which uses Range Concatenation Grammar (RCG) as a pivot formalism, thus opening the way to the parsing of several mildly context-sensitive formalisms. This environment currently supports tree-based grammars (namely Tree-Adjoining Grammars (TAG) and Multi-Component Tree-Adjoining Grammars with Tree Tuples (TT-MCTAG)) and allows computation not only of syntactic structures, but also of the corresponding semantic representations. It is used for the development of a tree-based grammar for German

    TuLiPA : towards a multi-formalism parsing environment for grammar engineering

    Get PDF
    In this paper, we present an open-source parsing environment (TĂĽbingen Linguistic Parsing Architecture, TuLiPA) which uses Range Concatenation Grammar (RCG) as a pivot formalism, thus opening the way to the parsing of several mildly context-sensitive formalisms. This environment currently supports tree-based grammars (namely Tree-Adjoining Grammars (TAG) and Multi-Component Tree-Adjoining Grammars with Tree Tuples (TT-MCTAG)) and allows computation not only of syntactic structures, but also of the corresponding semantic representations. It is used for the development of a tree-based grammar for German
    • …
    corecore