8,980 research outputs found

    The capacity region of broadcast channels with intersymbol interference and colored Gaussian noise

    Get PDF
    We derive the capacity region for a broadcast channel with intersymbol interference (ISI) and colored Gaussian noise under an input power constraint. The region is obtained by first defining a similar channel model, the circular broadcast channel, which can be decomposed into a set of parallel degraded broadcast channels. The capacity region for parallel degraded broadcast channels is known. We then show that the capacity region of the original broadcast channel equals that of the circular broadcast channel in the limit of infinite block length, and we obtain an explicit formula for the resulting capacity region. The coding strategy used to achieve each point on the convex hull of the capacity region uses superposition coding on some or all of the parallel channels and dedicated transmission on the others. The optimal power allocation for any point in the capacity region is obtained via a multilevel water-filling. We derive this optimal power allocation and the resulting capacity region for several broadcast channel models

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Spectrum Sharing in mmWave Cellular Networks via Cell Association, Coordination, and Beamforming

    Full text link
    This paper investigates the extent to which spectrum sharing in mmWave networks with multiple cellular operators is a viable alternative to traditional dedicated spectrum allocation. Specifically, we develop a general mathematical framework by which to characterize the performance gain that can be obtained when spectrum sharing is used, as a function of the underlying beamforming, operator coordination, bandwidth, and infrastructure sharing scenarios. The framework is based on joint beamforming and cell association optimization, with the objective of maximizing the long-term throughput of the users. Our asymptotic and non-asymptotic performance analyses reveal five key points: (1) spectrum sharing with light on-demand intra- and inter-operator coordination is feasible, especially at higher mmWave frequencies (for example, 73 GHz), (2) directional communications at the user equipment substantially alleviate the potential disadvantages of spectrum sharing (such as higher multiuser interference), (3) large numbers of antenna elements can reduce the need for coordination and simplify the implementation of spectrum sharing, (4) while inter-operator coordination can be neglected in the large-antenna regime, intra-operator coordination can still bring gains by balancing the network load, and (5) critical control signals among base stations, operators, and user equipment should be protected from the adverse effects of spectrum sharing, for example by means of exclusive resource allocation. The results of this paper, and their extensions obtained by relaxing some ideal assumptions, can provide important insights for future standardization and spectrum policy.Comment: 15 pages. To appear in IEEE JSAC Special Issue on Spectrum Sharing and Aggregation for Future Wireless Network
    • …
    corecore