57,043 research outputs found

    Sparse Allreduce: Efficient Scalable Communication for Power-Law Data

    Full text link
    Many large datasets exhibit power-law statistics: The web graph, social networks, text data, click through data etc. Their adjacency graphs are termed natural graphs, and are known to be difficult to partition. As a consequence most distributed algorithms on these graphs are communication intensive. Many algorithms on natural graphs involve an Allreduce: a sum or average of partitioned data which is then shared back to the cluster nodes. Examples include PageRank, spectral partitioning, and many machine learning algorithms including regression, factor (topic) models, and clustering. In this paper we describe an efficient and scalable Allreduce primitive for power-law data. We point out scaling problems with existing butterfly and round-robin networks for Sparse Allreduce, and show that a hybrid approach improves on both. Furthermore, we show that Sparse Allreduce stages should be nested instead of cascaded (as in the dense case). And that the optimum throughput Allreduce network should be a butterfly of heterogeneous degree where degree decreases with depth into the network. Finally, a simple replication scheme is introduced to deal with node failures. We present experiments showing significant improvements over existing systems such as PowerGraph and Hadoop

    The OTree: multidimensional indexing with efficient data sampling for HPC

    Get PDF
    Spatial big data is considered an essential trend in future scientific and business applications. Indeed, research instruments, medical devices, and social networks generate hundreds of petabytes of spatial data per year. However, many authors have pointed out that the lack of specialized frameworks for multidimensional Big Data is limiting possible applications and precluding many scientific breakthroughs. Paramount in achieving High-Performance Data Analytics is to optimize and reduce the I/O operations required to analyze large data sets. To do so, we need to organize and index the data according to its multidimensional attributes. At the same time, to enable fast and interactive exploratory analysis, it is vital to generate approximate representations of large datasets efficiently. In this paper, we propose the Outlook Tree (or OTree), a novel Multidimensional Indexing with efficient data Sampling (MIS) algorithm. The OTree enables exploratory analysis of large multidimensional datasets with arbitrary precision, a vital missing feature in current distributed data management solutions. Our algorithm reduces the indexing overhead and achieves high performance even for write-intensive HPC applications. Indeed, we use the OTree to store the scientific results of a study on the efficiency of drug inhalers. Then we compare the OTree implementation on Apache Cassandra, named Qbeast, with PostgreSQL and plain storage. Lastly, we demonstrate that our proposal delivers better performance and scalability.Peer ReviewedPostprint (author's final draft

    QUASII: QUery-Aware Spatial Incremental Index.

    Get PDF
    With large-scale simulations of increasingly detailed models and improvement of data acquisition technologies, massive amounts of data are easily and quickly created and collected. Traditional systems require indexes to be built before analytic queries can be executed efficiently. Such an indexing step requires substantial computing resources and introduces a considerable and growing data-to-insight gap where scientists need to wait before they can perform any analysis. Moreover, scientists often only use a small fraction of the data - the parts containing interesting phenomena - and indexing it fully does not always pay off. In this paper we develop a novel incremental index for the exploration of spatial data. Our approach, QUASII, builds a data-oriented index as a side-effect of query execution. QUASII distributes the cost of indexing across all queries, while building the index structure only for the subset of data queried. It reduces data-to-insight time and curbs the cost of incremental indexing by gradually and partially sorting the data, while producing a data-oriented hierarchical structure at the same time. As our experiments show, QUASII reduces the data-to-insight time by up to a factor of 11.4x, while its performance converges to that of the state-of-the-art static indexes
    • …
    corecore