1,110 research outputs found

    FastJet user manual

    Get PDF
    FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.Comment: 69 pages. FastJet 3 is available from http://fastjet.fr

    Probing medium-induced jet splitting and energy loss in heavy-ion collisions

    Full text link
    The nuclear modification of jet splitting in relativistic heavy-ion collisions at RHIC and the LHC energies is studied based on the higher twist formalism. Assuming coherent energy loss for the two splitted subjets, a non-monotonic jet energy dependence is found for the nuclear modification of jet splitting function: strongest modification at intermediate jet energies whereas weaker modification for larger or smaller jet energies. Combined with the smaller size and lower density of the QGP medium at RHIC than at the LHC, this explains the CMS-STAR groomed jet puzzle -- strong nuclear modification of the momentum sharing zgz_g distribution at the LHC whereas no obvious modification of the zgz_g distribution at RHIC. In contrast, the observed nuclear modification pattern of the groomed jet zgz_g distribution cannot be explained solely by independent energy loss of the two subjets. Our result may be tested in future measurements of groomed jets with lower jet energies at the LHC and larger jet energies at RHIC, for different angular separations between the two subjets.Comment: 10 pages, 12 figure

    Structure of Fat Jets at the Tevatron and Beyond

    Full text link
    Boosted resonances is a highly probable and enthusiastic scenario in any process probing the electroweak scale. Such objects when decaying into jets can easily blend with the cornucopia of jets from hard relative light QCD states. We review jet observables and algorithms that can contribute to the identification of highly boosted heavy jets and the possible searches that can make use of such substructure information. We also review previous studies by CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era" issue of The European Physical Journal C, we invite comments regarding contents of the review; v2 added references and institutional preprint number

    Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks

    Get PDF
    In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as "top taggers". To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.Comment: 53 pages, 17 figures. L. Asquith, S. Rappoccio, C. K. Vermilion, editors; v2: minor edits from journal revision

    A Framework for Finding Anomalous Objects at the LHC

    Full text link
    Search for new physics events at the LHC mostly rely on the assumption that the events are characterized in terms of standard-reconstructed objects such as isolated photons, leptons, and jets initiated by QCD-partons. While such strategy works for a vast majority of physics beyond the standard model scenarios, there are examples aplenty where new physics give rise to anomalous objects (such as collimated and equally energetic particles, decays due to long lived particles etc.) in the detectors, which can not be classified as any of the standard-objects. Varied methods and search strategies have been proposed, each of which is trained and optimized for specific models, topologies, and model parameters. Further, as LHC keeps excluding all expected candidates for new physics, the need for a generic method/tool that is capable of finding the unexpected can not be understated. In this paper, we propose one such method that relies on the philosophy that all anomalous objects are not\it{not} standard-objects. The anomaly finder, we suggest, simply is a collection of vetoes that eliminate all standard-objects up to a pre-determined acceptance rate. Any event containing at least one anomalous object (that passes all these vetoes), can be identified as a candidate for new physics. Subsequent offline analyses can determine the nature of the anomalous object as well as of the event, paving a robust way to search for these new physics scenarios in a model-independent fashion. Further, since the method relies on learning only the standard-objects, for which control samples are readily available from data, one can build the analysis in an entirely data-driven way.Comment: 32 pages, 5 tables and 12 figures; v2: references added; v3: Practical guideline given for implementation at the LHC, comments added on the possibility of inclusion of Muons and b-jets in the framework. Accepted for publication in Nuclear Physics B; v4: Title fixed from v3 to match journal version, funding information update
    • …
    corecore