4 research outputs found

    Recognizing Graphs Close to Bipartite Graphs with an Application to Colouring Reconfiguration

    Full text link
    We continue research into a well-studied family of problems that ask whether the vertices of a graph can be partitioned into sets AA and~BB, where AA is an independent set and BB induces a graph from some specified graph class G{\cal G}. We let G{\cal G} be the class of kk-degenerate graphs. This problem is known to be polynomial-time solvable if k=0k=0 (bipartite graphs) and NP-complete if k=1k=1 (near-bipartite graphs) even for graphs of maximum degree 44. Yang and Yuan [DM, 2006] showed that the k=1k=1 case is polynomial-time solvable for graphs of maximum degree 33. This also follows from a result of Catlin and Lai [DM, 1995]. We consider graphs of maximum degree k+2k+2 on nn vertices. We show how to find AA and BB in O(n)O(n) time for k=1k=1, and in O(n2)O(n^2) time for k2k\geq 2. Together, these results provide an algorithmic version of a result of Catlin [JCTB, 1979] and also provide an algorithmic version of a generalization of Brook's Theorem, which was proven in a more general way by Borodin, Kostochka and Toft [DM, 2000] and Matamala [JGT, 2007]. Moreover, the two results enable us to complete the complexity classification of an open problem of Feghali et al. [JGT, 2016]: finding a path in the vertex colouring reconfiguration graph between two given \ell-colourings of a graph of maximum degree kk

    Independent feedback vertex sets for graphs of bounded diameter

    Get PDF
    The Near-Bipartiteness problem is that of deciding whether or not the vertices of a graph can be partitioned into sets A and B, where A is an independent set and B induces a forest. The set A in such a partition is said to be an independent feedback vertex set. Yang and Yuan proved that Near-Bipartiteness is polynomial-time solvable for graphs of diameter 2 and NP-complete for graphs of diameter 4. We show that Near-Bipartiteness is NP-complete for graphs of diameter 3, resolving their open problem. We also generalise their result for diameter 2 by proving that even the problem of computing a minimum independent feedback vertex is polynomial-time solvable for graphs of diameter 2
    corecore