42,177 research outputs found

    Independence and concurrent separation logic

    Full text link
    A compositional Petri net-based semantics is given to a simple language allowing pointer manipulation and parallelism. The model is then applied to give a notion of validity to the judgements made by concurrent separation logic that emphasizes the process-environment duality inherent in such rely-guarantee reasoning. Soundness of the rules of concurrent separation logic with respect to this definition of validity is shown. The independence information retained by the Petri net model is then exploited to characterize the independence of parallel processes enforced by the logic. This is shown to permit a refinement operation capable of changing the granularity of atomic actions

    A Logic for True Concurrency

    Full text link
    We propose a logic for true concurrency whose formulae predicate about events in computations and their causal dependencies. The induced logical equivalence is hereditary history preserving bisimilarity, and fragments of the logic can be identified which correspond to other true concurrent behavioural equivalences in the literature: step, pomset and history preserving bisimilarity. Standard Hennessy-Milner logic, and thus (interleaving) bisimilarity, is also recovered as a fragment. We also propose an extension of the logic with fixpoint operators, thus allowing to describe causal and concurrency properties of infinite computations. We believe that this work contributes to a rational presentation of the true concurrent spectrum and to a deeper understanding of the relations between the involved behavioural equivalences.Comment: 31 pages, a preliminary version appeared in CONCUR 201

    The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems

    Full text link
    CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system

    A compiler approach to scalable concurrent program design

    Get PDF
    The programmer's most powerful tool for controlling complexity in program design is abstraction. We seek to use abstraction in the design of concurrent programs, so as to separate design decisions concerned with decomposition, communication, synchronization, mapping, granularity, and load balancing. This paper describes programming and compiler techniques intended to facilitate this design strategy. The programming techniques are based on a core programming notation with two important properties: the ability to separate concurrent programming concerns, and extensibility with reusable programmer-defined abstractions. The compiler techniques are based on a simple transformation system together with a set of compilation transformations and portable run-time support. The transformation system allows programmer-defined abstractions to be defined as source-to-source transformations that convert abstractions into the core notation. The same transformation system is used to apply compilation transformations that incrementally transform the core notation toward an abstract concurrent machine. This machine can be implemented on a variety of concurrent architectures using simple run-time support. The transformation, compilation, and run-time system techniques have been implemented and are incorporated in a public-domain program development toolkit. This toolkit operates on a wide variety of networked workstations, multicomputers, and shared-memory multiprocessors. It includes a program transformer, concurrent compiler, syntax checker, debugger, performance analyzer, and execution animator. A variety of substantial applications have been developed using the toolkit, in areas such as climate modeling and fluid dynamics

    Two for the Price of One: Lifting Separation Logic Assertions

    Full text link
    Recently, data abstraction has been studied in the context of separation logic, with noticeable practical successes: the developed logics have enabled clean proofs of tricky challenging programs, such as subject-observer patterns, and they have become the basis of efficient verification tools for Java (jStar), C (VeriFast) and Hoare Type Theory (Ynot). In this paper, we give a new semantic analysis of such logic-based approaches using Reynolds's relational parametricity. The core of the analysis is our lifting theorems, which give a sound and complete condition for when a true implication between assertions in the standard interpretation entails that the same implication holds in a relational interpretation. Using these theorems, we provide an algorithm for identifying abstraction-respecting client-side proofs; the proofs ensure that clients cannot distinguish two appropriately-related module implementations

    Linearizability with Ownership Transfer

    Full text link
    Linearizability is a commonly accepted notion of correctness for libraries of concurrent algorithms. Unfortunately, it assumes a complete isolation between a library and its client, with interactions limited to passing values of a given data type. This is inappropriate for common programming languages, where libraries and their clients can communicate via the heap, transferring the ownership of data structures, and can even run in a shared address space without any memory protection. In this paper, we present the first definition of linearizability that lifts this limitation and establish an Abstraction Theorem: while proving a property of a client of a concurrent library, we can soundly replace the library by its abstract implementation related to the original one by our generalisation of linearizability. This allows abstracting from the details of the library implementation while reasoning about the client. We also prove that linearizability with ownership transfer can be derived from the classical one if the library does not access some of data structures transferred to it by the client

    Some methodological issues in the design of CIAO, a generic, parallel concurrent constraint system

    Get PDF
    We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language
    corecore