1,802 research outputs found

    Independence Structures on the Submodules of a Module

    Get PDF
    Two definitions of dimension of a module are each shown to be the rank of an independence structure on a certain set of submodules of the module. This applies to Varadarajan's dual Goldie dimension and to Fleury's spanning dimension; the dualization of the latter is also discussed

    Cokernels of random matrices satisfy the Cohen-Lenstra heuristics

    Full text link
    Let A be an n by n random matrix with iid entries taken from the p-adic integers or Z/NZ. Then under mild non-degeneracy conditions the cokernel of A has a universal probability distribution. In particular, the p-part of an iid random matrix over the integers has cokernel distributed according to the Cohen-Lenstra measure up to an exponentially small error.Comment: 21 pages; submitte

    Galois module structure of Galois cohomology for embeddable cyclic extensions of degree p^n

    Full text link
    Let p>2 be prime, and let n,m be positive integers. For cyclic field extensions E/F of degree p^n that contain a primitive pth root of unity, we show that the associated F_p[Gal(E/F)]-modules H^m(G_E,mu_p) have a sparse decomposition. When E/F is additionally a subextension of a cyclic, degree p^{n+1} extension E'/F, we give a more refined F_p[Gal(E/F)]-decomposition of H^m(G_E,mu_p)

    An Equivariant Tamagawa Number Formula for Drinfeld Modules and Applications

    Full text link
    We fix data (K/F,E)(K/F, E) consisting of a Galois extension K/FK/F of characteristic pp global fields with arbitrary abelian Galois group GG and a Drinfeld module EE defined over a certain Dedekind subring of FF. For this data, we define a GG-equivariant LL-function ΘK/FE\Theta_{K/F}^E and prove an equivariant Tamagawa number formula for certain Euler-completed versions of its special value ΘK/FE(0)\Theta_{K/F}^E(0). This generalizes Taelman's class number formula for the value ζFE(0)\zeta_F^E(0) of the Goss zeta function ζFE\zeta_F^E associated to the pair (F,E)(F, E). Taelman's result is obtained from our result by setting K=FK=F. As a consequence, we prove a perfect Drinfeld module analogue of the classical (number field) refined Brumer--Stark conjecture, relating a certain GG-Fitting ideal of Taelman's class group H(E/K)H(E/K) to the special value ΘK/FE(0)\Theta_{K/F}^E(0) in question

    Extensions of differential representations of SL(2) and tori

    Full text link
    Linear differential algebraic groups (LDAGs) measure differential algebraic dependencies among solutions of linear differential and difference equations with parameters, for which LDAGs are Galois groups. The differential representation theory is a key to developing algorithms computing these groups. In the rational representation theory of algebraic groups, one starts with SL(2) and tori to develop the rest of the theory. In this paper, we give an explicit description of differential representations of tori and differential extensions of irreducible representation of SL(2). In these extensions, the two irreducible representations can be non-isomorphic. This is in contrast to differential representations of tori, which turn out to be direct sums of isotypic representations.Comment: 21 pages; few misprints corrected; Lemma 4.6 adde

    Instanton Expansion of Noncommutative Gauge Theory in Two Dimensions

    Full text link
    We show that noncommutative gauge theory in two dimensions is an exactly solvable model. A cohomological formulation of gauge theory defined on the noncommutative torus is used to show that its quantum partition function can be written as a sum over contributions from classical solutions. We derive an explicit formula for the partition function of Yang-Mills theory defined on a projective module for arbitrary noncommutativity parameter \theta which is manifestly invariant under gauge Morita equivalence. The energy observables are shown to be smooth functions of \theta. The construction of noncommutative instanton contributions to the path integral is described in some detail. In general, there are infinitely many gauge inequivalent contributions of fixed topological charge, along with a finite number of quantum fluctuations about each instanton. The associated moduli spaces are combinations of symmetric products of an ordinary two-torus whose orbifold singularities are not resolved by noncommutativity. In particular, the weak coupling limit of the gauge theory is independent of \theta and computes the symplectic volume of the moduli space of constant curvature connections on the noncommutative torus.Comment: 52 pages LaTeX, 1 eps figure, uses espf. V2: References added and repaired; V3: Typos corrected, some clarifying explanations added; version to be published in Communications in Mathematical Physic
    • …
    corecore