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Independence Structures on the Submodules of a Module 

JEREMY E. DAWSON 

Two definitions of dimension of a module are each shown to be the rank of an independence 
structure on a certain set of submodules of the module. This applies to Varadarajan's dual Goldie 
dimension and to Fleury's spanning dimension; the dualization of the latter is also discussed. 

1. INTRODUCTION 

In [2], it is shown that an independence space may be defined on a certain set of 
submodules of a given module. We refer the reader to that paper, or to [10, chs. 6, 7] 
or [1] for definitions and notation of independence theory. In particular, in [2] we 
point out that an independence space may be defined by its collection of independent 
sets, or by its collection of circuits. It may also be defined by its span operator, or 
dependence operator, for which the axioms can be written 

. D(l) For Ac:; E, Ac:;[A], 
D(2) if bE [A] then [Au {b}] c:; [A], 
D(3) if bE[Au{c}] but b~[A] then cE[Au{b}], 
D(4) if bE[A] then bE[A'] for some finite A'c:;A. 
Then ~={A c:; E: for each a E A, a~ [A\{a}]}. 

Throughout this paper R will denote a ring with 1 and all modules will be unitary 
left R-modules. For a submodule N of M, N is an essential submodule of M (N ~eM) 
if, for L ~ M, L n N = 0 implies L = 0; N is a small submodule of M (N ~. M) if, for 
L ~ M, L + N = M implies L = M. A non-zero module M is uniform if all its non-zero 
submodules are essential, and M is hollow if all its proper submodules are small. Note 
that a nontrivial submodule (factor module) of a uniform (hollow) module is also uniform 
(hollow). Let 

U(M)={N~M: N is uniform}, 

H(M)={N~M: N is hollow}, 

Uf(M) = {N < M: MIN is uniform}, and 

Hf(M)={N<M: M/N is hollow}. 

For N E Uf(M), we call N a uniform-factor submodule of M; similarly, N E Hf(M) is 
a hollow-factor (h.f.) submodule of M. We see that a uniform-factor submodule is a 
meet-irreducible member of the lattice of submodules of M, and a hollow submodule is 
a join-irreducible member. A submodule N is uniform if 0 is meet-irreducible in the 
lattice interval [0, N], and N is a h.f. submodule if M is join-irreducible in the lattice 
interval [ N, M]. 

For N ~ M, a complement of N in M is a submodule L of M, maximal such that 
N n L = 0. Dually, a supplement of N in M is L, minimal such that N + L = M. By Zorn's 
lemma, if N n K = 0 then K is contained in a complement of N; we will say that M has 
property (S) if, for K, N ~ M such that N + K = M, K contains a supplement L of N 
in M (equivalently, there exists a supplement L of N n K in K). 

In [2] it is shown that if C§(M) = {{M;: i E I} c:; U(M): the sum Ler M; is direct}, then 
( U(M), C§(M)) is an independence space. Under certain conditions, which are satisfied 
when M has finite Goldie dimension, the rank of C§(M) is the Goldie dimension of M. 
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Recently a dualization of Goldie dimension has been given by Varadarajan, [8], [6], 
and Fleury, [ 4], has defined a further notion of dimension. This latter can also be dualized, 
and we can define independence structures relating to each of these. Note that the concept 
of duality here is duality in the abelian category R-mod, not duality of independence 
structures. In fact, this duality manifests itself here primarily as duality in the lattice of 
submodules of M. 

2. THE DuAL GoLDIE STRUCTURE 

The following lemma dualizes the condition for a sum of submodules to be direct. 
Unfortunately, a finiteness condition is necessary. 

LEMMA 2.1. (Generalized weak Chinese remainder theorem.) Let K~o ... , Kr~ M. 
Then M/n~~t K; is naturally isomorphic .to ll~~t M/ K; (equivalently, the natural map 
M ~ ll~~t M/ K; is an epimorphism) if and only if, for each I= I, ... , r, K 1+nj,. 1 Kj = M. 

0 0'In this case, for 0 c J c I= {1, 0 r}, niEI\JKi +njEl Kj = M. 

PROOF. The equivalence is [8, lemma 1.4], and the last remark is easy to show. 

DEFINITION. We define the dual Goldie structure (fj d(M) c;; ~(Hf(M)) [the set of 
subsets of (Hf(M)] by 
(a) for {K~o ... , K,} c;; Hf(M), {K~o ... , K,} E (fj d(M) if K~o ... , K, satisfy the conditions 
of Lemma 2.1, and 
(b) for { K;: i E I} c;; Hf( M), {K;: i E I} is in (fj d( M) if every finite subset of it is, according 
to (a). 

Part (b) of the definition is unfortunately necessary unless it can be shown that the 
property of (a) is of finite character. In view of (b), (fj d(M) satisfies 1(3) automatically, 
and every dependent set contains a (finite) circuit. We consider these circuits. 

LEMMA 2.2. Let {M~o ... , M,} be a circuit of(fj d(M). Then for 0 c J c I= {I, ... , r}, 
niE /\J M; + njEJ ~ -,~= M. 

PROOF. Suppose the result is false, and consider a specific counter-example. Then as 
niE/\J M;+njEJ ~ = M, M/niEI M; is naturally isomorphic to 

M EB M 
niEI\J M; njEJ ~ 

and as {M;: i E I\1} and {~: j EJ} are in (fj d(M), this is naturally isomorphic to 
miEI\J M/ M;EF>lljEJ M/ ~).Thus {Mt. 0 M,}E (fj d(M), a contradiction. 0 0' 

THEOREM 2.3. (fj d(M) is an independence space. 

PRooF. As (fj d(M) satisfies 1(3), the circuits satisfy C(l) and C(3), and the indepen­
dent sets are those not containing a circuit. It remains to show C(2). Let {M~o ... , M,} 
and {N~o ... , Ns} be distinct circuits of (fj d(M) with M 1 = N 1 ; suppose further that 
M; = N; for i = 1, ... , t ( t < r, s), and that the two circuits have no other common members. 
Wehave,byLemma2.2,thatM¥M1 +(M2n · · · nM,)andM¥N1+(N2n · · · nN5 ). 

We show that {M2, ... , M,., N,+t. ... , Ns} e (fj d(M) by showing that M ¥= 
(M2 n · · · n M,) + (Nr+ 1 n · · · n N 5 ). Suppose otherwise. Let mE M be given. Since 
{N~o ... , Ns} is a circuit, {N~o ... , N,} E (fj d(M) and we have M = N 1 + (N2n · · · n N,). 
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So let m = n1 + n*, with n1 E N 1 and n*E N 2 n · · · n N,; by our supposition we may let 
n*=m'+n', with m'EM2 n · · · nM, and n'EN,+1 n · · · nN5 • Thus n'=n*-m'E 
N 2 n · · · nN, (=M2 n · · · nM,), and m=n1 +m'+n'EN1 +(M2 n · · · nM,)+ 
(N2 n · · · nN5 ). Hence M=N1 +(M2 n · · · nM,)+(N2 n · · · nNs); since MIN1 is 
hollow this means that either M = N 1 + (M2 n · · · n M,) or M = N 1 + (N2 n · · · n N 5 ), 

which (as M 1 = N 1) is a contradiction. Thus {M2, ••• , M, N,+~> ... , N.} is dependent and 
so contains a circuit, as required. 

Clearly, for {K~> ... , K,} E 'fJ d(M), if K 1 n · · · n K, ~. M, then {K~> ... , K,} is 
maximal independent and so r = rk( 'fJ d( M) ). The converse holds under certain conditions. 
To determine them we first need a lemma. 

LEMMA 2.4. If {Kl> ... , K,} E 'fi d(M), and K1 n · · · n K, ~ K < M, then K is con­
tained in a h.f. submodule of M. 

PROOF. Let t be minimal such that N = (K1 n · · · n K,) + K < M. (Note that if t = 0 
we say that K 1 n · · · n K, = M.) we show that MIN is hollow. As {K~> ... ,K,} E 'fJ d(M), 
(K 1 n · · · n K,_ 1) + K, = M and so 

M K 1 n···nK,_1 

K, K 1 n · · · n K, 

Since, by the minimality of t, (K 1 n · · · n K,_ 1) + K = M, we have (K1 n · · · n K,_ 1) + 
N=M and so 

As (K 1 n · · · n K,_ 1) n N ~ K 1 n · · · n K,, MIN is isomorphic to a factor module of 
M I K., which is hollow; hence MIN is hollow and N is the required h.f. submodule 
of M. 

We can now prove part of the duals of Lemmas 3 and 4 of [2]. These results relate 
'fJ d(M) to the work of Varadarajan [8]. Recall that each basis of 'fJ d(M) has the same 
cardinal, rk('fi d(M)). We recall from [8, 4efinition 1.9], that M has corank r (r a 
non-negative integer or oo) if r is minimal such that the following holds: if K~> . .. , Ks < M 
and the natural map M ~ f1:= 1 Ml K; is an epimorphism, then s~ r. We also note that 
in view of the remark preceding Lemma 2.4, condition (b) following is equivalent to: M 

has weak corank r < oo ([8, definition 1.18]). 

THEOREM 2.5. For a module M, (a)~(b)=>(c)=>(d), and if rk('fi d(M)) = r<oo, 
then (a)~(b)~(c)~(d): 
(a) M has corank r<oo; 
(b) rk('fid(M))=r<oo, and for some basis {KJ> ... ,K,} of 'fid(M), K 1 n · · · n 
K,~.M; 

(c) every non-trivial factor module of M has a hollow factor module; 
(d) for each basis of 'fJ d(M), the intersection of the modules in it is small in M. 

Further, if (a) holds and the natural map M ~IT;= I Ml K; (K; < M) is an epimorphism, 
then each M I K; is hollow. 

PROOF. (a)=>(c). Suppose that L< M and Ml Ldoes not have a hollow factor module. 
Let r be given. Set L0 = L, and for each i = 0, ... , r we have that MIL; is not hollow and 
we can choose L; and Li+ 1 such that L; < L;; Li+ 1 < M and L: + L;+ 1 = M. Thus we have 
natural epimorphisms MIL; ~ MIL; EEl M I Li+ 1 and hence the natural epimorphism M ~ 
n;=o Ml L;. So M does not satisfy (a) for any r<oo. 
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(b)~(c). Let {K~> ... , K,} be a basis of~ d(M) such that K 1 n · · · n K,,;;;,.M, and 
let L< M be given. Then let K = (K 1 n · · · n K,)+ L< M. Hence, by Lemma 2.4, Ml K, 
and hence MIL, has a hollow factor module. 
(c)~(d). Suppose (c) holds, and let {K;: i E I} be a basis of ~ d(M). Suppose thatniE 1 K; is not small in M. Then let niE 1 K; + L = M, with L < M, and let MIL have 

hollow factor MIN, so niE I K; + N = M. As {K;: i E /} is a basis, there is a circuit 
{Ki: j E J} u { N} for some 1 c;; I. Then, by Lemma 2.2, njEJ Ki + N < M, contrary toniEl K;+N= M. Thus niEl K;,;;;,.M. 

(a)¢>(b). Suppose that either (a) or (b) holds; we have shown above that (c) and 
(d) hold. Suppose corank (M)~r. Let M~D~=t MIK; be a natural epimorphism, 
and let each M I K; have hollow factor MIL;. Then M ~ n;=l MIL; is a natural 
epimorphism, {Lt. ... , L,} E ~ d(M), and rk(~ d(M) ~ r. On the other hand, it is clear 
that rk(~d(M))~r implies that corank (M)~r. It remains to show that if (a) holds, 
then the intersection of some basis is small in M; this follows from (d), which we have 
shown is implied by (a). Also, under the general supposition that rk(~d(M))=r<oo, 
clearly (d)~(b) and so all the conditions are equivalent. 

Finally, suppose (a) holds, with a natural epimorphism M ~ n;=t Ml K;. Suppose 
M I Ki is not hollow, and let M I Ki = Ll Ki + L'I Ki, where Ki < L, L' < M. Then as the 
natural map M I Ki ~ M I LEt> MIL' is an epimorphism (by Lemma 2.1 ), we have the 
natural epimorphism M ~ M I LEt> MIL' Ef> n;=2 M I K;, contradicting the maximality of r. 
Thus each M I K; is hollow. 

An independence space may have the property of being modular, i.e. given a circuit 
{ e~> ... , ep} and q such that 2,;;;, q,;;;, p- 2 there is an element e such that {e~> ... ,eq, e} 
and {eq+t, ... , eP, e} are both dependent (in which case they are necessarily circuits). 

THEOREM 2.6. (Hf(M), ~ d(M)) is modular. 

PROOF. Let {M~> ... , MP} be a circuit, and let 2,;;;, q,;;;, p- 2. By Lemma 2.2, let L = 
(M1 n · · · nMq)+(Mq+ 1 n · · · nMp)<M.ThenbyLemma2.4,wemayletNEHf(M) 
such that N ~ L. Now (M1 n · · · n Mq) + N = N < M, so {M~> ... , Mq, N} and similarly 
{Mq+t• ... , M~" N} are dependent, as required. 

We note that this theorem has the same consequences as the corresponding result for 
the Goldie structure, as discussed in [2]. That is, if~ d(M) is 'connected' as an indepen­
dence space, and of rank at least 3, then it naturally corresponds to a projective geometry, 
which is (if Desarguesian) coordinatizable over a unique division ring D. In this case the 
structure of D remains an open question: Since the division rings thus found for the 
Goldie structure are all of the form En(E)I J(En(E)) forE uniform injective, we may 
conjecture that D is at least sometimes a division ring of the form En(P)I J(En(P)) 
where P is (finitely generated) hollow projective (see [9, 4.1 to 4.3], and also [5]). 

This subject is also dealt with in [3]. 

3. THE FLEURY STRUCTURE 

In [ 4], Fleury develops a notion of dimension on a module whose non-small submodules 
satisfy the DCC. We use his ideas to develop an independence structure $(M) on H(M) 
for arbitrary M. In particular, this does not require that submodules of M have supple­
ments in M, as they do in the modules considered by Fleury. 

We define a map f on [J;(H(M)) which will be related to the dependence operator of 
$(M). 
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DEFINITION. For N,MiEH(M), we say NE/({Mi: iEI}) if 

L•E[M,+N M 
:::::..:..::c:.....__.:__~s ' 

L•El M, LiE/ M, 

i.e. LE 1 Mi + N +X= M ~LE 1 Mi +X = M. This IS related to Fleury's work by the 
following result. 

LEMMA 3.1. Let X be a supplement in M of LEI Mi + N (Mi, N E H(M)). Then N E 
f({Mi: i E I}) if and only if LiE I Mi+ X= M. 

PROOF. The forward implication is clear. Suppose LiE I Mi +X= M but N ~f({Mi: 
iEI}), i.e. for some Y<M LE 1 Mi+N+Y=M but LE 1 Mi+Y=M'<M. Then as 
M>M'=LEIMi+(XnM'), we have that X>XnM'; but M=M'+N=LiEIMi+ 
(X n M') + N, which contradicts X being a supplement of LE 1 Mi + N 

THEOREM 3.2. f obeys axioms D(l) to D(3). 

PROOF. D(l) is clear. To show 0(2), let N Ej({Mi: i E I}) and let LE/({Mi: 
iEI}u{N}): we show LE/({Mi:iEI}). Let X,-;,M such that LiEIMi+L+X=M. 
Then LEI Mi+ N + L+ X= M and so, as LE/({Mi: i E I}u {N}), LEI Mi+ N +X= M. 
Likewise, as N E/({Mi: i E I}), we have LiE I Mi +X= M, and it follows that 
LE/({Mi: i E I}). 

We show 0(3) by supposing that N E/({Mi: i E I}u {L}) and L~f({Mi: i E I}u {N}) 
and thence showing that N E/({Mi: i E I}). Let LE 1 Mi + N + Y = M; we will show that 
LE 1 Mi + Y = M. By our supposition there exists X,-;, M such that LE 1 Mi + N + L +X = 
MbutLEI Mi+N+X=M'<M.AsLE 1 Mi+N+ Y=M,M'=LE 1 Mi+N+(M'n Y) 
and LE 1 Mi + L+ N + (M' n Y) = M' + L = M. Since N E/({Mi: i E I} u {L}), it follows 
thatLE 1 Mi+L+(M'n Y) = M,andso M'=LE 1 Mi+(M'nL)+(M'n Y).As M',t:. M, 
M' n L is a proper submodule of L, and, as L is hollow, M' n L ,-;,. L, from which it 
follows that M'nL,-;,.M. Now, as M'+Y=M, LE 1 Mi+(M'nL)+Y=M and as 
M' n L ,-;,. M, LiE I Mi+ Y = M, as required; thus N E/({Mi: i E I}). 

Let us now define/' on g'J(£): NE/'({Mi: iE I}) if NE/({Mi: iEJ}) for some finite 
J r;; I. Then it is clear that f' obeys D(l) to D(4 ), and so is the span operator of an 
independence structure, fJ'(M), the Fleury structure, on H(M). 

THEOREM 3.3 fJ'(M) = {{Mi: i E I}<;; H(M): for j E I, ~ ~f'({Mi: i E I\j})} is an 
independence structure. 

It is clear that for MiEH(M), LiEI Mi=M implies that f({MJ)=H(M), but the 
converse does not necessarily hold. We have, however, the following result. 

PROPOSITION 3.4. Let {N~> ... , Ns} be a finite subset of H(M) such that L:~I Ni = M. 
Then the sum of every basis of fJ'(M) is M, and the bases are precisely the minimal 
subsets of H(M) whose sum is M. 

PROOF. Suppose that {M~> ... , Mr} is a basis of fJ'(M) such that L~~~ Mi = M' < M. 
Then, as each ~Ef'({Mh····Mr}), (M'+~)/M',-;,.MjM', and so L;~ (M'+1 
~)/M' ,-;,. M/ M'. That is, M/ M' ,-;,s M/ M', which is a contradiction. Hence L~~I Mi = 
M. Thus the spanning subsets of H(M) are precisely those whose sum is M, and so the 
bases, being the minimal spanning subsets, are the minimal subsets whose sum is M. 
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We now look at the question of refining a given expression forM as a sum ofsubmodules 
to a sum of hollow submodules. 

LEMMA 3.5. 
(a) Let L+N=M (with N<M). Then LEH(M)=>NEHf(M). 
(b) Let L(>"O) be a supplement of N in M. Then LE H(M)~NE Hf(M). 

PROOF. (a) If Lis hollow, its factor LI(LnN) is hollow, and LI(LnN)=MIN 
(b) Let N E Hf( M) and let A, B < L. Then as L is a supplement of N, A+ N < M and 

B+N<M. As MIN is hollow, (A+N)+(B+N)<M, i.e. (A+B)+N<M, and so 
A+ B < L. Thus L is hollow. 

THEOREM 3.6. For a module M with the supplement property (S), (a)=>(b)~(c)=>(d); 
ifrk(g;(M))<oo, then (a) to (d) are equivalent: 
(a) rk(g;(M)) < oo, and for some basis {LJ. ... , L,}, I~=I L; = M; 
(b) every non-trivial factor module of M has a hollow factor module; 
(c) if N is a non-small submodule of M then there exists L E H ( N) such that L Jlf. N; 
(d) M =LEI LJor every basis {L;: i E I} of g;(M). 

PROOF. (b)=>(c). Let a non-small submodule N of M be given, and let X< M such 
that N +X = M. Let M I Y be a hollow factor module of MIX, by (b); so Y ~ X and 
N + Y = M. Let L,;; N be a supplement of Y in M, so L is hollow by Lemma 3.5 (b). 
As L:o;; Nand L+ Y = M, L+ ( Y n N) = N; as NJif Y (for N + Y = M), Lis not small 
inN 

(c)=>(b). Let A< M be given, and let N be a supplement of A. By (c), Let N = L+ K, 
with L hollow and K<N As K<N, K+A<M and as K+A+L=M, MI(K+A)= 
LI((K +A) n L), which is hollow since L is hollow. Thus M I(K +A) is the required 
hollow factor module of MIA. 

(c)=>( d). Let {L;: i E I} be a basis of g;(M). If LE 1 L; < M, let N be a supplement of 
LE 1 L; in M. Then by (c), let L:o;; N, LE H(M) such that L+ K = N, K < N Then as 
K<N, LEIL;+K<M whereas LEIL;+L+K=M. Hence Lef({L;: iEI}) which 
contradicts {L;: i E I} being a basis. Thus LE 1 L; = M. 

(a)=>(b) will be proved following Theorem 3.8, and, trivally, (d)=>(a) when g;(M) is 
of finite rank. 

Note that condition (b) of Theorem 3.6 is just condition (c) of Theorem 2.5. 

CoROLLARY 3.7 Let M have property (S), let property (c) of Theorem 3.6 hold, and 
let rk(g;(M))=r<oo. If M=M1 + · · · +Ms is an irredundant sum, then we can write 
M = L 1 + · · · + L" an irredundant sum, with each L; hollow and contained in some ~; 
also s,;; r. 

PROOF. Given the irredundant sum M = M 1 + · · · + M., choose some M; which is 
not hollow, and replace M; by a submodule of it which is a supplement of L.,; ~; then 
if the new M; is not hollow, replace it by L+ K, where L+ K = M;, L is hollow and 
K<M; [which is possible by condition (c) of Theorem 3.6]. Then the sum M= 
Lj>'i M; + L+ K is irredundant. This process can be repeated until it stops, when all the 
submodules in the sum are hollow; the number of hollow submodules in the sum increases 
by at least one each time. The process must stop, for the set {LJ. ... , L,} of hollow 
submodules in the sum at any stage is independent (by the irredundancy of the sum), and 
so t,;; r. Since we get at least one hollow module from each M;, s,;; r. Proposition 3.4 
then shows that the final expression M = L 1 + · · · + L, satisfies t = r. 
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Theorem 3.6 suggests a connection between the Fleury and the dual Goldie structures 
for modules with property (S); this is explored by Varadarajan [8] in the case of modules 
with finite corank. 

THEOREM 3.8. Let M have property (S). Then if either C§ d(M) or @'(M) is of finite 
rank, then they are ofequal rank; in this case, if {M~. ... , M,} and {N~. ... , N,} are bases 
of @P(M) and C§ d(M), respectively, then M 1 + · · · + M, = M if and only if N 1 n · · · n 
N,,;;;SM. 

PROOF. Let I be a finite index set. Let rk(@'(M))~[I[, with {M;: iEI}E@'(M). Let 
LE 1 M; have a supplement X in M. Then for j E I, let ~ =LiE I\j M; +X; ~ < M 
by Lemma 3.1, and as ~+~ = M, ~ E Hf(M) by Lemma 3.5. Since, for j E I, 
~+ n iEI\j N; ~LiEI\j M;+ X+~+ X= M, we have {N;: i E I}E C§ d(M) and 
rk(W d(M)) ~[I[. 

Conversely, let rk(Wd(M))~[I[, with {N;:iEI}EWd(M). Then, for jEI, 
~+niEl\j N; = M; let~ be a supplement in M of~. contained in niEl\j N;. Hence 
~ E H(M) by Lemma 3.5. As LiEI\j M; + ~ + ~ = M but L;Eiv M; + ~,;;; ~ < M, we 
have ~~f({M;: iEIV}) and so {M;: iEI}E@'(M) and rk(@'(M))~[I[. 

Thus @'(M) and C§ d(M) have equal or infinite rank. Suppose they have finite rank. 
Then by Proposition 3.4 if some basis of @'(M) has sum M, then so has every basis; by 
Theorem 2.5, (b)~(d), if the intersection of some basis of C§ d(M) is small in M, then 
this is so for every basis. If this latter is the case, then by Theorem 2.5 (b)~ (c) and 
Corollary 3.7, the sum of each basis of @'(M) is M. Alternatively, this follows from the 
fact that in either of the two constructions above, M 1 + · · · + M, + ( N 1 n · · · n N,) = M, 
which can be shown by induction as follows. For s < r, Ms+I,;;; N 1n · · · n N., and 
so Ms+I+(Nin ... nNsnNs+I)=(Ms+I+Ns+l)n(Nin ... nN..)=Nin ... nNS. 
Thus M 1 + · · · +Ms+M,+1+(N1n · · · nNsnNs+1)=M1+ · · · +Ms+(Nin · · · n 
Ns), which is equal to M by induction on s. 

Conversely, suppose that N 1 n · · · n N, ~s M for some basis {N~. ... , N,} of Wd(M). 
Let (N1n · ·· nN,)+Y=M, with Y<M. Thus for jEI (={l, ... ,r}), niErvN;= 
(N1n · · · n N,) + <niEI\j N; n Y), and hence by lemma 2.1, M = ~ +niEI\j N; = 
~+(niEI\j N;n Y). Thus, in the second construction above, we can choose each~ to 
be a supplement of~ contained in niEIV N; n Y. Then {M~. ... , M,} is a basis of @'(M) 
whose sum is contained in Y. (It can also be shown, referring to either construction 
above, that, provided M 1 + · · · + M, = M, N 1n · · · n N, ,;;;s M; the method is to show 
by induction on s that if (N1 n · · · n Ns)+ X= M, then Ms+I + · · · + M,+ X= M). 

PROOF OF THEOREM 3.6, (a)~(b). Suppose {Lh ... , L,} is a basis of @'(M) such 
that L 1 + · · · + L, = M. Then by Theorem 3.8, there is a basis {N~. ... , N,} of C§ d(M) 
such that N 1 n · · · n N, ,;;;s M, and the result follows by Theorem 2.5 (b)~(c). 

4. THE DuAL FLEURY STRUCTURE 

Section 3 can be dualized directly. 

DEFINITION. For N, M;EUf(M), we say NEh({M;:iEI}) if niEIM;nN,;;;e 
niEl M;, i.e. niE[ M; n N n X= o~niEl M; n X= 0. 

LEMMA 4.1. Let X be a complement in M of niEI M; n N (M;, N E Uf(M)). Then N E 
h ({M;: iE I}~ n ;EI M; nX =0. 

The proof is similar to that of Lemma 3.1 ; results and proofs of Section 3 are dualized 
by generally interchanging n with +, 0 with M, ,;;; with ~. and changing other concepts 
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accordingly (e.g. N ,;;eM toN ,;;s M, N E H(M) toNE Uf(M)). A result corresponding 
to Theorem 3.2 holds, and if we define h' from h as we did f' from f we get the dual 
Fleury independence structure. 

THEOREM 4.3. g; d(M) = {{Mi: i E I}~ Uf(M): for each i E I and finite J ~ I\i, 
Mi e h({M;: j E J})} is an independence structure on Uf(M). 

Since the dual of property (S) holds in every module M, it is superfluous to quote the 
dual of Proposition 3.4 as well as that of Theorem 3.6, and we let the reader dualize 
Lemma 3.5. 

THEOREM 4.6. For a module M, (a)~(b)~(c)~(d); if rk(gi d(M)) ,;:;;oo, then (a) to 
(d) are equivalent: 
(a) rk(gi d(M)) < oo, and for some basis {L~> ... , L,}, n~=t Li = 0; 
(b) every non-zero submodule of M has a uniform submodule; 
(c) if N is a non-essential submodule of M, then there exists LE Uf(M) such that L";3 N 
and L/ N 'f;e M/ N (i.e. there exists K > N such that Ln K = N); 
(d) 0 = niEI Li for every basis {Li: i E I} of g; d(M). 

We note that condition (b) above is condition (a) of[2, lemma 3(b)]. Again, we leave 
it to the reader to dualize Corollary 3.7. Part of the dual of Theorem 3.8 is deducible 
from [7, theorems 4.9 and 4.1 0]. 

THEOREM 4.8. If either !§(M) or g; d(M) is offinite rank, then they have equal rank; 
in this case, if{M~> ... , M,} and {Nt. ... , N,} are bases ofgi d(M) and I§(M), respectively, 
then M 1 n · · · n M, = 0 if and only if N 1 + · · · + N, ,;:;; e M. 
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