55,518 research outputs found

    RTL2RTL Formal Equivalence: Boosting the Design Confidence

    Full text link
    Increasing design complexity driven by feature and performance requirements and the Time to Market (TTM) constraints force a faster design and validation closure. This in turn enforces novel ways of identifying and debugging behavioral inconsistencies early in the design cycle. Addition of incremental features and timing fixes may alter the legacy design behavior and would inadvertently result in undesirable bugs. The most common method of verifying the correctness of the changed design is to run a dynamic regression test suite before and after the intended changes and compare the results, a method which is not exhaustive. Modern Formal Verification (FV) techniques involving new methods of proving Sequential Hardware Equivalence enabled a new set of solutions for the given problem, with complete coverage guarantee. Formal Equivalence can be applied for proving functional integrity after design changes resulting from a wide variety of reasons, ranging from simple pipeline optimizations to complex logic redistributions. We present here our experience of successfully applying the RTL to RTL (RTL2RTL) Formal Verification across a wide spectrum of problems on a Graphics design. The RTL2RTL FV enabled checking the design sanity in a very short time, thus enabling faster and safer design churn. The techniques presented in this paper are applicable to any complex hardware design.Comment: In Proceedings FSFMA 2014, arXiv:1407.195

    Formal Verification of Fault Tolerant NoC-based Architecture

    Get PDF
    International audienceApproaches to design fault tolerant Network-on-Chip (NoC) for System-on-Chip(SoC)-based reconfigurable Field-Programmable Gate Array (FPGA) technology are challenges on the conceptualisation of the Multiprocessor System-on-Chip (MPSoC) design. For this purpose, the use of rigorous formal approaches, based on incremental design and proof theory, has become an essential step in a validation architecture. The Event-B formal method is a promising formal approach that can be used to develop, model and prove accurately the domain of SoCs and MPSoCs. This paper gives a formal verification of a NoC architecture, using the Event-B methodology. The formalisation process is based on an incremental and validated correct-by-construction development of the NoC architecture

    Incremental bounded model checking for embedded software

    Get PDF
    Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain

    Hardware/Software Co-verification Using Path-based Symbolic Execution

    Get PDF
    Conventional tools for formal hardware/software co-verification use bounded model checking techniques to construct a single monolithic propositional formula. Formulas generated in this way are extremely complex and contain a great deal of irrelevant logic, hence are difficult to solve even by the state-of-the-art Satisfiability (SAT) solvers. In a typical hardware/software co-design the firmware only exercises a fraction of the hardware state-space, and we can use this observation to generate simpler and more concise formulas. In this paper, we present a novel verification algorithm for hardware/software co-designs that identify partitions of the firmware and the hardware logic pertaining to the feasible execution paths by means of path-based symbolic simulation with custom path-pruning, propertyguided slicing and incremental SAT solving. We have implemented this approach in our tool COVERIF. We have experimentally compared COVERIF with HW-CBMC, a monolithic BMC based co-verification tool, and observed an average speed-up of 5× over HW-CBMC for proving safety properties as well as detecting critical co-design bugs in an open-source Universal Asynchronous Receiver Transmitter design and a large SoC design
    corecore