10,629 research outputs found

    The ModelCC Model-Driven Parser Generator

    Full text link
    Syntax-directed translation tools require the specification of a language by means of a formal grammar. This grammar must conform to the specific requirements of the parser generator to be used. This grammar is then annotated with semantic actions for the resulting system to perform its desired function. In this paper, we introduce ModelCC, a model-based parser generator that decouples language specification from language processing, avoiding some of the problems caused by grammar-driven parser generators. ModelCC receives a conceptual model as input, along with constraints that annotate it. It is then able to create a parser for the desired textual syntax and the generated parser fully automates the instantiation of the language conceptual model. ModelCC also includes a reference resolution mechanism so that ModelCC is able to instantiate abstract syntax graphs, rather than mere abstract syntax trees.Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    Carnap: an Open Framework for Formal Reasoning in the Browser

    Get PDF
    This paper presents an overview of Carnap, a free and open framework for the development of formal reasoning applications. Carnap’s design emphasizes flexibility, extensibility, and rapid prototyping. Carnap-based applications are written in Haskell, but can be compiled to JavaScript to run in standard web browsers. This combination of features makes Carnap ideally suited for educational applications, where ease-of-use is crucial for students and adaptability to different teaching strategies and classroom needs is crucial for instructors. The paper describes Carnap’s implementation, along with its current and projected pedagogical applications

    Isabelle/PIDE as Platform for Educational Tools

    Full text link
    The Isabelle/PIDE platform addresses the question whether proof assistants of the LCF family are suitable as technological basis for educational tools. The traditionally strong logical foundations of systems like HOL, Coq, or Isabelle have so far been counter-balanced by somewhat inaccessible interaction via the TTY (or minor variations like the well-known Proof General / Emacs interface). Thus the fundamental question of math education tools with fully-formal background theories has often been answered negatively due to accidental weaknesses of existing proof engines. The idea of "PIDE" (which means "Prover IDE") is to integrate existing provers like Isabelle into a larger environment, that facilitates access by end-users and other tools. We use Scala to expose the proof engine in ML to the JVM world, where many user-interfaces, editor frameworks, and educational tools already exist. This shall ultimately lead to combined mathematical assistants, where the logical engine is in the background, without obstructing the view on applications of formal methods, formalized mathematics, and math education in particular.Comment: In Proceedings THedu'11, arXiv:1202.453
    • …
    corecore