4,554 research outputs found

    A rate control algorithm for scalable video coding

    Get PDF
    This thesis proposes a rate control (RC) algorithm for H.264/scalable video coding (SVC) specially designed for real-time variable bit rate (VBR) applications with buffer constraints. The VBR controller assumes that consecutive pictures within the same scene often exhibit similar degrees of complexity, and aims to prevent unnecessary quantization parameter (QP) fluctuations by allowing for just an incremental variation of QP with respect to that of the previous picture. In order to adapt this idea to H.264/SVC, a rate controller is located at each dependency layer (spatial or coarse grain scalability) so that each rate controller is responsible for determining the proper QP increment. Actually, one of the main contributions of the thesis is a QP increment regression model that is based on Gaussian processes. This model has been derived from some observations drawn from a discrete set of representative encoding states. Two real-time application scenarios were simulated to assess the performance of the VBR controller with respect to two well-known RC methods. The experimental results show that our proposal achieves an excellent performance in terms of quality consistency, buffer control, adjustment to the target bit rate, and computational complexity. Moreover, unlike typical RC algorithms for SVC that only satisfy the hypothetical reference decoder (HRD) constraints for the highest temporal resolution sub-stream of each dependency layer, the proposed VBR controller also delivers HRD-compliant sub-streams with lower temporal resolutions.To this end, a novel approach that uses a set of buffers (one per temporal resolution sub-stream) within a dependency layer has been built on top of the RC algorithm.The proposed approach aims to simultaneously control the buffer levels for overflow and underflow prevention, while maximizing the reconstructed video quality of the corresponding sub-streams. This in-layer multibuffer framework for rate-controlled SVC does not require additional dependency layers to deliver different HRD-compliant temporal resolutions for a given video source, thus improving the coding e ciency when compared to typical SVC encoder con gurations since, for the same target bit rate, less layers are encoded

    RBF-Based QP Estimation Model for VBR Control in H.264/SVC

    Get PDF
    In this paper we propose a novel variable bit rate (VBR) controller for real-time H.264/scalable video coding (SVC) applications. The proposed VBR controller relies on the fact that consecutive pictures within the same scene often exhibit similar degrees of complexity, and consequently should be encoded using similar quantization parameter (QP) values for the sake of quality consistency. In oder to prevent unnecessary QP fluctuations, the proposed VBR controller allows for just an incremental variation of QP with respect to that of the previous picture, focusing on the design of an effective method for estimating this QP variation. The implementation in H.264/SVC requires to locate a rate controller at each dependency layer (spatial or coarse grain scalability). In particular, the QP increment estimation at each layer is computed by means of a radial basis function (RBF) network that is specially designed for this purpose. Furthermore, the RBF network design process was conceived to provide an effective solution for a wide range of practical real-time VBR applications for scalable video content delivery. In order to assess the proposed VBR controller, two real-time application scenarios were simulated: mobile live streaming and IPTV broadcast. It was compared to constant QP encoding and a recently proposed constant bit rate (CBR) controller for H.264/SVC. The experimental results show that the proposed method achieves remarkably consistent quality, outperforming the reference CBR controller in the two scenarios for all the spatio-temporal resolutions considered.Proyecto CCG10-UC3M/TIC-5570 de la Comunidad Autónoma de Madrid y Universidad Carlos III de MadridPublicad

    RBF-Based QP Estimation Model for VBR Control in H.264/SVC

    Full text link

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    In-layer multi-buffer framework for rate-controlled scalable video coding

    Get PDF
    Temporal scalability is supported in scalable video coding (SVC) by means of hierarchical prediction structures, where the higher layers can be ignored for frame rate reduction. Nevertheless, this kind of scalability is not totally exploited by the rate control (RC) algorithms since the hypothetical reference decoder (HRD) requirement is only satisfied for the highest frame rate sub-stream of every dependency (spatial or coarse grain scalability) layer. In this paper we propose a novel RC approach that aims to deliver several HRD-compliant temporal resolutions within a particular dependency layer. Instead of using the common SVC encoder configuration consisting of a dependency layer per each temporal resolution, a compact configuration that does not require additional dependency layers for providing different HRD-compliant temporal resolutions is proposed. Specifically, the proposed framework for rate-controlled SVC uses a set of virtual buffers within a dependency layer so that their levels can be simultaneously controlled for overflow and underflow prevention while minimizing the reconstructed video distortion of the corresponding sub-streams. This in-layer multi-buffer approach has been built on top of a baseline H.264/SVC RC algorithm for variable bit rate applications. The experimental results show that our proposal achieves a good performance in terms of mean quality, quality consistency, and buffer control using a reduced number of layers.This work has been partially supported by the National Grant TEC2011-26807 of the Spanish Ministry of Science and Innovation.Publicad
    • …
    corecore