26,030 research outputs found

    Incremental Learning-to-Learn with Statistical Guarantees

    Get PDF
    In learning-to-learn the goal is to infer a learning algorithm that works well on a class of tasks sampled from an unknown meta distribution. In contrast to previous work on batch learning-to-learn, we consider a scenario where tasks are presented sequentially and the algorithm needs to adapt incrementally to improve its performance on future tasks. Key to this setting is for the algorithm to rapidly incorporate new observations into the model as they arrive, without keeping them in memory. We focus on the case where the underlying algorithm is ridge regression parameterized by a positive semidefinite matrix. We propose to learn this matrix by applying a stochastic strategy to minimize the empirical error incurred by ridge regression on future tasks sampled from the meta distribution. We study the statistical properties of the proposed algorithm and prove non-asymptotic bounds on its excess transfer risk, that is, the generalization performance on new tasks from the same meta distribution. We compare our online learning-to-learn approach with a state of the art batch method, both theoretically and empirically

    Incremental learning-to-learn with statistical guarantees

    Get PDF
    In learning-to-learn the goal is to infer a learning algorithm that works well on a class of tasks sampled from an unknown metadistribution. In contrast to previous work on batch learning-to-learn, we consider a scenario where tasks are presented sequentially and the algorithm needs to adapt incrementally to improve its performance on future tasks. Key to this setting is for the algorithm to rapidly incorporate new observations into the model as they arrive, without keeping them in memory. We focus on the case where the underlying algorithm is Ridge Regression parametrised by a symmetric positive semidefinite matrix. We propose to learn this matrix by applying a stochastic strategy to minimize the empirical error incurred by Ridge Regression on future tasks sampled from the meta-distribution. We study the statistical properties of the proposed algorithm and prove non-asymptotic bounds on its excess transfer risk, that is, the generalization performance on new tasks from the same meta-distribution. We compare our online learning-to-learn approach with a state-of-the-art batch method, both theoretically and empirically

    Learning an Approximate Model Predictive Controller with Guarantees

    Full text link
    A supervised learning framework is proposed to approximate a model predictive controller (MPC) with reduced computational complexity and guarantees on stability and constraint satisfaction. The framework can be used for a wide class of nonlinear systems. Any standard supervised learning technique (e.g. neural networks) can be employed to approximate the MPC from samples. In order to obtain closed-loop guarantees for the learned MPC, a robust MPC design is combined with statistical learning bounds. The MPC design ensures robustness to inaccurate inputs within given bounds, and Hoeffding's Inequality is used to validate that the learned MPC satisfies these bounds with high confidence. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the learned MPC. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem, for which we learn a neural network controller with guarantees.Comment: 6 pages, 3 figures, to appear in IEEE Control Systems Letter

    Crowd-ML: A Privacy-Preserving Learning Framework for a Crowd of Smart Devices

    Full text link
    Smart devices with built-in sensors, computational capabilities, and network connectivity have become increasingly pervasive. The crowds of smart devices offer opportunities to collectively sense and perform computing tasks in an unprecedented scale. This paper presents Crowd-ML, a privacy-preserving machine learning framework for a crowd of smart devices, which can solve a wide range of learning problems for crowdsensing data with differential privacy guarantees. Crowd-ML endows a crowdsensing system with an ability to learn classifiers or predictors online from crowdsensing data privately with minimal computational overheads on devices and servers, suitable for a practical and large-scale employment of the framework. We analyze the performance and the scalability of Crowd-ML, and implement the system with off-the-shelf smartphones as a proof of concept. We demonstrate the advantages of Crowd-ML with real and simulated experiments under various conditions

    Private Incremental Regression

    Full text link
    Data is continuously generated by modern data sources, and a recent challenge in machine learning has been to develop techniques that perform well in an incremental (streaming) setting. In this paper, we investigate the problem of private machine learning, where as common in practice, the data is not given at once, but rather arrives incrementally over time. We introduce the problems of private incremental ERM and private incremental regression where the general goal is to always maintain a good empirical risk minimizer for the history observed under differential privacy. Our first contribution is a generic transformation of private batch ERM mechanisms into private incremental ERM mechanisms, based on a simple idea of invoking the private batch ERM procedure at some regular time intervals. We take this construction as a baseline for comparison. We then provide two mechanisms for the private incremental regression problem. Our first mechanism is based on privately constructing a noisy incremental gradient function, which is then used in a modified projected gradient procedure at every timestep. This mechanism has an excess empirical risk of ≈d\approx\sqrt{d}, where dd is the dimensionality of the data. While from the results of [Bassily et al. 2014] this bound is tight in the worst-case, we show that certain geometric properties of the input and constraint set can be used to derive significantly better results for certain interesting regression problems.Comment: To appear in PODS 201
    • …
    corecore