23 research outputs found

    Incremental Learning of Statistical Motion Patterns with Growing Hidden Markov Models

    Get PDF
    International audienceModeling and predicting human and vehicle motion is an active research domain. Due to the difficulty of modeling the various factors that determine motion (e.g. internal state, perception, etc.) this is often tackled by applying machine learning techniques to build a statistical model, using as input a collection of trajectories gathered through a sensor (e.g. camera, laser scanner), and then using that model to predict further motion. Unfortunately, most current techniques use off-line learning algorithms, meaning that they are not able to learn new motion patterns once the learning stage has finished. In this paper, we present an approach where motion patterns can be learned incrementally, and in parallel with prediction. Our work is based on a novel extension to Hidden Markov Models - called Growing Hidden Markov models - which gives us the ability to learn incrementally both the parameters and the structure of the model

    Transferable Pedestrian Motion Prediction Models at Intersections

    Full text link
    One desirable capability of autonomous cars is to accurately predict the pedestrian motion near intersections for safe and efficient trajectory planning. We are interested in developing transfer learning algorithms that can be trained on the pedestrian trajectories collected at one intersection and yet still provide accurate predictions of the trajectories at another, previously unseen intersection. We first discussed the feature selection for transferable pedestrian motion models in general. Following this discussion, we developed one transferable pedestrian motion prediction algorithm based on Inverse Reinforcement Learning (IRL) that infers pedestrian intentions and predicts future trajectories based on observed trajectory. We evaluated our algorithm on a dataset collected at two intersections, trained at one intersection and tested at the other intersection. We used the accuracy of augmented semi-nonnegative sparse coding (ASNSC), trained and tested at the same intersection as a baseline. The result shows that the proposed algorithm improves the baseline accuracy by 40% in the non-transfer task, and 16% in the transfer task

    Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

    Full text link
    To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict pedestrian motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.Comment: Submitted to 2014 International Workshop on the Algorithmic Foundations of Robotic

    Predictive Modeling of Pedestrian Motion Patterns with Bayesian Nonparametrics

    Get PDF
    For safe navigation in dynamic environments, an autonomous vehicle must be able to identify and predict the future behaviors of other mobile agents. A promising data-driven approach is to learn motion patterns from previous observations using Gaussian process (GP) regression, which are then used for online prediction. GP mixture models have been subsequently proposed for finding the number of motion patterns using GP likelihood as a similarity metric. However, this paper shows that using GP likelihood as a similarity metric can lead to non-intuitive clustering configurations - such as grouping trajectories with a small planar shift with respect to each other into different clusters - and thus produce poor prediction results. In this paper we develop a novel modeling framework, Dirichlet process active region (DPAR), that addresses the deficiencies of the previous GP-based approaches. In particular, with a discretized representation of the environment, we can explicitly account for planar shifts via a max pooling step, and reduce the computational complexity of the statistical inference procedure compared with the GP-based approaches. The proposed algorithm was applied on two real pedestrian trajectory datasets collected using a 3D Velodyne Lidar, and showed 15% improvement in prediction accuracy and 4.2 times reduction in computational time compared with a GP-based algorithm.Ford Motor Compan

    Adaptive human motion analysis and prediction

    Get PDF
    Human motion analysis and prediction is an active research area where predicting human motion is often performed for a single time step based on historical motion. In recent years, longer term human motion prediction has been attempted over a number of future time steps. Most current methods learn motion patterns (MPs) from observed trajectories and then use them for prediction. However, these learned MPs may not be indicative due to inadequate observation, which naturally affects the reliability of motion prediction. In this paper, we present an adaptive human motion analysis and prediction method. It adaptively predicts motion based on the classified MPs in terms of their credibility, which refers to how indicative the learned MPs are for the specific environment. The main contributions of the proposed method are as follows: First, it provides a comprehensive description of MPs including not only the learned MPs but also their evaluated credibility. Second, it predicts long-term future motion with reasonable accuracy. A number of experiments have been conducted in simulated scenes and real-world scenes and the prediction results have been quantitatively evaluated. The results show that the proposed method is effective and superior in its performance when compared with a recursively applied Auto-Regressive (AR) model, which is called the Recursive Short-term Predictor (RSP) for long-term prediction. The proposed method has 17.73% of improvement over the RSP in prediction accuracy in the experiment with the best performance. On average, the proposed method has 5% improvement over the RSP in prediction accuracy over 10 experiments. © 2011 Elsevier Ltd. All rights reserved.postprin
    corecore