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Abstract 
 
 

Human motion analysis and prediction is an active research area where predicting human 

motion is often performed for a single time step based on historical motion. In recent years, 

longer term human motion prediction has been attempted over a number of future time steps. 

Most current methods learn Motion Patterns (MPs) from observed trajectories and then use 

them for prediction. However, these learned MPs may not be indicative due to inadequate 

observation, which naturally affects on the reliability of motion prediction. In this paper, we 

present an adaptive human motion analysis and prediction method. It adaptively predicts 

motion based on the classified MPs in terms of their credibility, which refers to how 

indicative the learned MPs are for the specific environment. The main contributions of the 

proposed method are: First, it provides a comprehensive description of MPs including not 

only the learned MPs but also their evaluated credibility. Second, it predicts long-term future 

motion with reasonable accuracy. A number of experiments have been conducted in 

simulated scenes and real-world scenes and the prediction results have been quantitatively 

evaluated. The results show that the proposed method is effective and superior in its 

performance when compared with a recursively applied Auto-Regressive (AR) model which 

is called the Recursive Short-term Predictor (RSP) for long-term prediction. The proposed 

method has 17.73% of improvement over the RSP in prediction accuracy in the experiment 

with the best performance. On average, the proposed method has 5% improvement over the 

RSP in prediction accuracy over 10 experiments. 

 

 

 

Keywords: Motion pattern, pattern clustering, pattern classification, prediction. 
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I. INTRODUCTION 

UMAN motion analysis is essential for understanding movement of human objects and 

how they interact with each other in applications such as pedestrian surveillance, crowd 

control and social signal processing. The study of related spatial trajectories, velocities and 

changing angles under specific conditions builds knowledge of motion characteristics, which 

helps predict future movement, object interaction as well as assess the likelihood of potential 

dangerous and/or abnormal scenarios in dynamically changing situations.  

In cases such as along corridors or sidewalks, pedestrians tend to follow well-defined paths, 

and the resultant motions are consistent and almost known a priori. Thus, motion analysis is 

trivial and prediction can be reasonably accurate. In other more generic environments 

however, there may not be any defined paths to walk along, e.g., shopping mall, trains station, 

playground and field. In these cases, the spatial trajectory, walking speed and how often 

direction is changed reflect the broad intention of the particular human concerned. Therefore, 

human motion analysis aims to extract such information, which can be very useful for 

predicting future movements. 

The main challenge of human motion analysis and prediction is that human beings move 

according to their intentions, which can be rather difficult to be modeled or predicted [1]. 

Conventionally, a prediction of the human’s location in the next time step is made based on 

his/her current and previous positions [2]. In such short-term prediction, motion characteristic 

is assumed to be consistent, i.e., a certain trend runs through the past, current and future steps. 

Given the historical motion patterns, the next location may be predicted based on techniques 

such as neural network [3], Markov models [4, 5], Kalman filter [6, 7] or collision/velocity 

cones [8, 9]. 

H
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Although these techniques are able to produce reasonably good single-step prediction, their 

performance degrades rapidly when they are used to make longer term prediction [10], 

especially when motion trend is not obvious or consistent. To address this issue, recent 

attempts have been made to predict human motion over a number of future time-steps. For 

instance, the method presented in [11] manually defined some points of interest in the 

environment first, where human may likely visit, and one of these points is then selected as 

the destination position. The criterion used is that the selected destination is the closest to the 

tangential vector presenting the human positions of the last two time steps. It then treats the 

destination as the result of long-term motion prediction, although it really is a substantial 

simplification as there are many possible routes and MPs towards the same destination. In 

[12], the authors clustered observed trajectories into MPs using Expectation Maximization 

(EM), then derived hidden Markov models (HMM) from the learned MPs and used these 

HMMs to record human positions. However, the limitation of this approach is that the 

observed trajectories must include one or more of the so-called resting places where humans 

are assumed to stop and stay for a certain period of time. It requires the locations of these 

resting places be known a priori for the formation of MPs, which may not be readily available 

in reality. Other researchers further tackled the MP learning problem based on more general 

observable trajectories that do not need prior information. Often, a raw trajectory in these 

approaches is represented by a sequence of positions, describing the human’s state at 

consecutive discrete time steps. These descriptive models focus on the physical state of the 

object without taking semantics into account and the learning problem is dealt with by 

unsupervised clustering algorithms to extract a number of ‘typical’ MPs from a set of raw 

trajectories [1]. One example is the approach presented in [13], which used fuzzy k-means to 

find MP clusters. In [14], the authors performed a geometrical analysis that compares the 

separation distance between trajectories and then hierarchically grouped trajectories to learn 
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MPs. Some other clustering approaches for learning MPs have also been proposed, including 

divisive clustering [15], graph cutting [16, 17], and spectral clustering [18, 19]. 

In this paper, we propose a method based on clustering and classifying MPs from the 

observable trajectories. Compared with the other methods for learning MPs, we not only 

obtain MPs by clustering accumulated human trajectories but also evaluate learned MPs in 

terms of their characteristics and adaptively predict long-term motions according to evaluated 

credibility of MPs. In the proposed method, observable trajectories are first derived from key 

frames in a video based on detected humans in a single frame and data association across 

frames [20-22]. Then, the derived trajectories are clustered using Constrained Gravitational 

Clustering (CGC) [23] to form MPs. This algorithm belongs to a class of agglomerative 

hierarchical clustering algorithms that are widely utilized in recent research on learning 

patterns [24]. For each clustered MP, it is further evaluated for credibility. The criterion of the 

credibility is to separate all clustered MPs into several credibility levels based on analyzing 

the mass and size information of each MP. The number of credibility levels is adaptively 

determined according to the characteristic of MPs. The MPs at the top level are most credible 

since each of such MP represents a class that has a considerable number of members that are 

strongly consistent with each other. The MPs at the bottom level have the lowest credibility 

because each of such MP represents a class that has a small number of members that are 

reasonably consistent but variation is evident. Based on credibility levels of the clustered 

MPs, an adaptive prediction model is developed. As long as a matched MP can be found for 

the current trajectory, its future motion is predicted to be similar to the matched MP. If the 

current trajectory is matched with a MP at the top credibility level, the predicted future 

motion covers the most number of time steps. On the other hand, matching with MP at lower 

credibility level implies a prediction of future motion with less number of time steps. 

Generally, the number of time steps of the predicted motion is determined by the credibility 
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level, i.e., the lower it is, the less number of time steps is predicted for future motion. If the 

current trajectory is not matched with any existing MPs, then prediction is made by an Auto-

Regressive (AR) model [25] which is used to predict its action in the next time step only. 

This adaptive prediction approach is more reliable than those that apply the learned MPs 

equally without knowing their credibility. The proposed method has been realized and 

extensively tested in both simulated scenes and real-world scenes. It has been evaluated 

quantitatively by calculating prediction error based on predicted and actual motions. The 

results show that the proposed method makes reasonably accurate long-term prediction with 

acceptable error. It is further proved that it is superior in its performance, i.e., has lower 

prediction error, when compared with an AR model applied recursively for long-term 

prediction. 

The rest of this paper is organized as follows. In Section II, the generalized framework of 

the proposed method is outlined. Section III describes the main functions in the proposed 

method. Section IV depicts the experimental results together with some related evaluation and 

analysis. Section V concludes the paper with a brief discussion of future research direction. 

II. GENERALIZED FRAMEWORK  

The generalized framework of the proposed method is depicted in Fig. 1, which consists of 

four main functions: (1) Trajectory Extraction; (2) MP Clustering; (3) MP Classification; and 

(4) Motion Prediction. 
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Fig. 1:  Generalized framework of the proposed method 

Given key frames from a video input, the observable trajectories are first extracted to form 

historical trajectories by using a model-based human detection and association method (3.1). 

MPs are then clustered using CGC as a general representation of a sub-group of trajectories 

(3.2). Other clustering methods may be used as well. After analyzing the mass and size 

information of clustered MPs, each clustered MP is further classified into a credibility level 

(3.3). 

Given a current trajectory, it is matched with all the available MPs and the decision for 

number of time steps of predicted motion is made based on a probability model which 

measures the similarity between the current trajectory and the classified MP (3.4). If there is a 

match between the current trajectory and a MP at the top credibility level, then the prediction 

based on the most credible MP is performed and a long-term motion with most time steps is 

predicted to be similar to the matched MP. If there is a match between the current trajectory 

and a MP in a lower credibility level, then a prediction based on a less credible MP is 
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performed and a long-term motion with less time steps is predicted to be similar to the 

matched MP. If all else fail, which means the current trajectory is not matched to any existing 

MP, then prediction is performed for a single action in the next time step by using the AR 

model.  

III. PROPOSED METHOD 
 

3.1 Trajectory Extraction 

For detecting human objects in a single frame [20], we formulate the problem into a 

Bayesian framework and design 3D human shape models to represent various postures. We 

calculate the image likelihood of a human model as the product of region likelihood, which 

measures how well the region covered by the model overlaps with the foreground, and shape 

likelihood, which measures the probability of the pixels covered by the model's boundary 

being real boundary pixels, with image evidence being provided by foreground extraction 

[21] and probability of boundary [26]. The prior requires that two humans cannot stand on the 

same location and the likelihood of a validated candidate is large enough, e.g. at least the 

human head is visible. To find the optimal solution, human candidates are first nominated by 

a head detector, which is an upper-semi circle detector; and a foot detector, which detects 

lower extrema on the foreground boundary. Then an iterative model fitting and candidate 

validation/rejection step follows. In each iteration, only human candidates that are possible to 

be un-occluded or whose occluding humans are likely to have been validated are selected for 

model fitting, and then a minimum description length based candidate validation and 

rejection strategy is applied on the fitted models to determine which should be validated or 

rejected. It ends when the status of every candidate has been determined. The output of 

human detection is a best fit model for each confirmed candidate. 
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To associate models across frames, the idea is to avoid identity switch by approximating the 

complicated 2nd-order Markov Chain with a simple and fast method. The proposed method 

consists of five steps. First, reliable initial tracklets are obtained by connecting two detection 

responses from consecutive frames using a two-threshold strategy [27], i.e. they are 

connected only if their affinity is high enough and significantly higher than the affinity of any 

other conflicting pairs (if two links share the same start point or end point, they are 

conflicting). Second, ambiguous tracklets that tend to introduce identity switch are explicitly 

detected and are not allowed to link temporarily. Third, the remaining tracklets are linked by 

applying the Hungarian algorithm [27]. Fourth, ambiguous tracklets are inserted into tracks 

formed by reliable tracklets by applying the Hungarian algorithm again. Finally, we iteratively 

link all the tracklets and tracks, and break the link with lower link probability if an ambiguous 

tracklet has two ends linked simultaneously. The iteration ends when there is no link to break. 

Due to occlusion and missed detection, some tracks may not be complete, i.e. not both ends 

are at the entrances/exits of the scene. We simply discard incomplete tracks and further 

manually check complete tracks in which the checked correct ones are extracted for the later 

trajectory clustering.  

Based on human detection and model association, we could derive the original location 

information of the human, which is represented in the form of discrete time location 

information ro
k[n] where ro

k[n]=(xo
k[n], yo

k[n]). Since human beings could walk at different 

speeds, which result in different distances covered in the same time interval, a re-sampling 

step is required such that a more reasonable comparison and match can be performed in the 

clustering and prediction stage. The re-sampled trajectory is obtained by using a circular 

moving window along the motion direction of the original trajectory. The intersection 

coordinate of the moving window and the trajectory is orderly recorded, and the re-sampled 

trajectory is defined by the set of corresponding sequential coordinates 
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Tk=tk(n1,n2)={rk[n]}={(xk[n], yk[n])} where n1 and n2 are the starting and ending time steps of 

the trajectory, respectively, and n1nn2. 

3.2 MP Clustering 

ith cluster jth cluster

li lj

mi=4 mj=7jiCCF
ijCCF

 
Fig. 2:  Parameters for gravitational force 

To cluster MPs from observable trajectory data, we employ the CGC method as described 

in [23]. It imposes a clustering constraint per iteration to control the formation of multiple 

clusters, without the need to assign a termination condition. At the start, each trajectory is 

regarded as the initial mean location vector of a cluster. In principle, the clustering method is 

completely controlled by the attraction between existing clusters. Analogy to gravitational 

force, existing clusters separated by a short distance are more likely to form a new cluster 

compared with those separated by a long distance. The ‘gravitational force’, 
jiCCF between the 

ith and jth clusters is given as 

                                                   )(3 ji

ji

ji
CC ll

ll

mm
GF

ji





 ,                                                  (1) 

where G is the gravitational constant, mi and mj are the masses represented by the numbers of 

trajectories in the ith and jth clusters respectively, and li and lj are the mean vectors of 

trajectory data in the ith and jth clusters respectively, as depicted in Fig. 2.  
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Fig. 3:  Description of MP 

After MP clustering, each cluster contains a number of trajectories with similar spatial 

location information. An MP is defined for each cluster. In the definition, we use three 

elements: 1) The mean vector of trajectories in the cluster; 2) The left boundary of trajectories 

in the cluster; 3) The right boundary of trajectories in the cluster. For example, the mth 

clustered MP is given by Cm={ l
mT , mT , r

mT }, as depicted in Fig. 3. The mean vector mT  is 

used to represent the mean location characteristics of the mth cluster. The left boundary l
mT  

and the right boundary r
mT  describe the maximum distance deviations on the left and right of 

mT , respectively. l
mT  and r

mT  are determined by connecting the location (xk(t), yk(t)) that has 

the largest distance deviation on the left (or right) of mT  at each time step. As Tk, mT , l
mT  and 

r
mT  are also defined by the set of sequential states, which are given as mT = mt (n1,n2)={ mr [n]}, 

l
mT = l

mt  (n1,n2)={ l
mr [n]} and r

mT = r
mt (n1,n2)={ r

mr [n]}, respectively, where n1nn2. 

3.3 MP Classification 

The credibility levels of clustered MPs are determined based on the mass and size 

information of each MP cluster. For the mth clustered MP Cm, let Wm be the mass value which 

is defined by the number of trajectories in the MP, and Zm be the size value which is 

represented by the distance between l
mT  and r

mT  of the MP. We propose a credibility index 
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credm for representing how credible the Cm is for the specific environment, which is 

calculated as: 
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In this case, a clustered MP with a larger mass value and a smaller size value refers to a more 

credible MP. Thus, a clustered MP has the highest credibility when it satisfies credm=1.0, and 

a clustered MP with a zero credibility index value is least credible. Suppose there are totally 

M MPs and they are then sorted in a descending order in terms of the credibility index value. 

Let C1 denote the clustered MP with the largest credibility index value and CM denote the 

clustered MP with the smallest credibility index value. Based on the difference of credibility 

index values of adjacent clustered MPs, we define a reverse credibility assignment RCA(Cm) 

for each MP Cm (1≤m≤M) which is detailed described as: 

                        













Cmmm

Cmmm
m

DCCDiffCCRCA

DCCDiffCCRCA
CRCA

),(_1)(

),(_)(
)(

1

1
1 .                         (3) 

The initial value RCA(C1) is 1 which means the top level with the largest credibility index 

value. C_Diff(Cm,Cm+1) is the absolute difference of credm and credm+1, and CD  is the average 

value of all C_Diff(Cm,Cm+1). From Equation (3), each RCA(Cm+1) is obtained from the 

previously known RCA(Cm). The last one RCA(CM) has the maximal numerical value which 

means the bottom level with the smallest credibility index value. All resultant RCA(Cm) 

values are represented by the number as shown in Fig. 4. It is noted that RCA(CM) also 

represents the number of credibility levels. In this approach, we do not require the knowledge 

of the number of credibility levels which can be adaptively and automatically determined.   
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Fig. 4:  Reverse credibility assignment of clustered MPs 

 

3.4 Motion Prediction 

3.4.1 General Concept 
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Fig. 5:  Algorithmic flow of the adaptive motion prediction model 

The focus of the proposed method is to predict human motion in the most appropriate 

manner based on the classified MPs and the current trajectory, through an adaptive prediction 

hierarchy as depicted in Fig. 5. Tk describes the current trajectory, mT  represents the mean 
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location characteristics of the mth MP. Let T*k denotes the predicted motion of Tk. If Tk is 

defined up to t, then T*k is defined from t+1 onward. Suppose there are N observable 

trajectories and M MPs. mT  needs to be first equalized with the current trajectory Tk in terms 

of dimension. Then, both Tk and the equalized portions of mT  are input to a probability model 

in which a probability is calculated for measuring the similarity between Tk and mT . Based on 

the probability value, we propose two criteria for deciding the number of time steps of the 

predicted motion. Finally, the corresponding different kind of long-term motion or short-term 

action T*k is predicted for the current trajectory. 

3.4.2 Dimension Equalization 

{ }}
Tk

Q+1

Q+K1K1

K2

mTl
mT

r
mT

r
mrp)(T

l
mrp)(T

mrp)(T

Q+K1

Q+K1

Q+1

Q+1

K2
K2

 
Fig. 6:  Dimension equalization (K2>K1) 

Since the current trajectories and the MPs consist of spatial locations of different number of 

time steps, before matching is performed, their dimensions need to be equalized. To do that, 

we first segment mT , l
mT  and r

mT  to the same data dimension as Tk. For example, if Tk has K1 

time steps and mT  has K2 time steps (K2>K1), as depicted in Fig. 6, we first select the portion 

on mT  which has the smallest Euclidean distance to Tk as the representative mrp)(T  of the 

whole mT . Thus mrp)(T  can be represented as 

                mrp)(T  = mt (Q+1,Q+K1)={ mr [n]},    0≤Q≤ K2-K1, Q+1≤n≤Q+K1,                    (4) 
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where Q+1 is the corresponding time step on mT  that marks where mrp)(T  starts from. Then we 

obtain the representatives l
mrp)(T  and r

mrp)(T  of the whole l
mT  and r

mT  by selecting the portions 

on l
mT  and r

mT  from the same starting to ending time step as mT . So l
mrp)(T  and r

mrp)(T  can be 

similarly described as 

l
mrp)(T  = 

l
mt (Q+1,Q+K1)={

l
mr [n]},   0≤Q≤ K2-K1, Q+1≤n≤Q+K1, 

                       
r

mrp)(T  = 
r
mt (Q+1,Q+K1)={

r
mr [n]},   0≤Q≤ K2-K1, Q+1≤n≤Q+K1.                  (5) 

After dimension equalization, { l
mrp)(T , mrp)(T , r

mrp)(T } is used in the following prediction step. 

3.4.3 Probability Model for Similarity Measurement  

A Bayesian probability model is proposed for similarity measurement between the current 

trajectory and the MP cluster. In the Bayes model, a posterior probability P( mT |Tk) is 

calculated, which is the probability of the MP cluster mT  that being followed by the current 

trajectory Tk. P( mT |Tk) is given by 
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The calculation of P( mT |Tk) is based on the prior probability P( mT ) for mT , the conditional 

probability density p(Tk| mT ) which is the likelihood of mT  with respect to Tk, and the 

evidence factor 



M

m

mmkk Ppp
1

)()|()( TTTT  which can be viewed as merely a scale factor that 

guarantees that the posterior probabilities sum to 1. 

The prior probability P( mT ) is calculated based on the mass Wm which is given as 
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In (7), L( mT ) denotes the likelihood of mT  based on considering both the likelihood of mT  

among all the MPs. In (8), P( mT ) is obtained by a normalization operation based on the 

likelihood value L( mT ) thus the summation of all prior probability values is 1. 

The conditional probability density p(Tk| mT ) represents the likelihood of Tk belonging to 

mT . p(Tk| mT ) is calculated as 

                            )|()|()|,()|( mmmmk pdpdpp TTTTT   .                              (9) 

The calculation of p(Tk| mT ) is based on the product of two independent conditional 

probability density functions: p(d| mT ) and p(  | mT ). p(d| mT ) is the probability density 

function for d given mT  in which d means the distance between Tk and mT . d is calculated as 
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1
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KK

i
ai ,                                                 (11) 

where D(rk[i], ][ iQm r ) refers to the Euclidean distance between the corresponding 

coordinate pair rk[i] on Tk and ][ iQm r  on mT , and ai is a weight factor for each time step, 

which means an “older” time step has less impact when matching is performed, and K1 is the 

time steps of Tk. p(d| mT ) is calculated under the condition that d<dB, in which dB is defined 

as the acceptable distance range which is obtained based on the left and right boundary of mT  
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where ai is the same weight factor calculated by (11), ])[],[( iQiQD m
l
m  rr  and 

])[],[( iQiQD m
r
m  rr  refer to the Euclidean distances between ][ iQ

l
m r  on 

l
mT  and ][ iQm r  on 
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mT , and ][ iQ
r
m r  on r

mT  and ][ iQm r  on mT , respectively. We regard MP({
l
mT , mT , 

r
mT }) as a 

Gaussian distribution model where the Mean locates at mT , From mT  to l
mT  (or r

mT ), a larger 

distance of Tk away from mT  means a less likely matching between Tk and mT . If Tk goes 

outside of l
mT  or r

mT , the matching fails as depicted in Fig. 7. From the symmetry attribute of 

the Gaussian model, the larger value of either ])[],[( iQiQD m
l
m  rr  or ])[],[( iQiQD m

r
m  rr  is 

selected to be 3σi for representing the maximal match-able range at each time step. The 

function p(d| mT ) is given as 
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Fig. 7:  Failed matching case for p(d| mT ) = 0, where mrp)(T  is the representative of whole mT  for matching 

with Tk, and 
l

mrp)(T  and 
r

mrp)(T  are defined similarly 

 
The other conditional probability density p(  | mT ), which is considered for the calculation 

of p(Tk| mT ), is the probability density function for   given mT  in which   depicts the 

changing angle from Tk to mT  at the last time step of Tk that the prediction is performed. It is 

believed that a smaller changing angle means a higher similarity between Tk and mT  since 

there is less change in motion direction. The calculation of p(  | mT ) is given by 
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where (max)  depicts the maximal changing angle in the historical time steps of Tk. Here, 

(max)

2


 is a scale factor that guarantees that the integral of the density over the set is 1. 

Based on this probability model for adaptive prediction, we quantify the posterior 

probability that Tk follows each mT  and then propose the criteria for deciding the number of 

time steps which is to be predicted for Tk. As presented in Fig. 5, if P( mT |Tk)=0 is satisfied 

for any mT , which means the current trajectory Tk fails to match with all existing MPs, Tk is 

performed short-term prediction for one single time step action. Otherwise, Tk is predicted for 

a long-term motion over a number of future time steps.  

3.4.4 Adaptive Prediction 

For Tk with the matched mT , a long-term future motion is predicted based on mT . To do 

this, we first calculate the number of time steps of the predicted motion T*k. Let S denote the 

corresponding time step of mT  which is closest to the last time step (K1
th time step) of Tk for 

performing prediction, and K2 denotes the total number of time steps of mT . The number of 

the predicted time steps NPM(T*k) is adaptively calculated in terms of the reverse credibility 

assignment RCA(Cm) (Cm={ l
mT , mT , r

mT }) which is given as:  
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Here, (K2-S) represents the possible maximal time steps of T*k. 
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CRCA  denotes a 

confidence coefficient for prediction based on RCA(Cm). If RCA(Cm)=1, it can be determined 

from Equation (16) that the corresponding confidence coefficient is 1, and that the exactly 

maximal (K2-S) time steps are predicted. Along with an increasing RCA(Cm) value referring to 

a descending credibility level of Cm, the corresponding confidence coefficient also decreases 



 Page 19

and less future time steps are predicted for Tk. If the matched Cm for Tk has the maximal 

RCA(Cm)(=RCA(CM)) value which means a lowest credibility level, a long-term future motion 

with the least time steps will be predicted for Tk. Based on the number of time steps 

determined for the predicted motion, T*k can be represented as 

                  T*k=t*k(K1+1, K1+NPM(T*k))={r*k[n]},K1+1≤n≤ K1+NPM(T*k),               (17) 

where r*k[n] means the predicted spatial location of Tk at each time step after K1, which is 

defined as 

                    r*k[n] = 1mr [S+n-K1] + (rk[K1] - 1mr [S]), K1+1≤n≤ K1+NPM(T*k).                (18) 

When Tk is not matched with any existing MP, a single time step action is predicted, which 

is achieved by the following equation 

                                     
2

)()()()1( s
t

s TtBTttt avww  ,                                             (19) 

where w(t) means the position at time step t, and v(t) and a(t) are the corresponding velocity 

and acceleration values, respectively. Bt is time-dependent and is updated by the adaptive 

algorithm in [25]. 

IV. VALIDATION OF THE PROPOSED METHOD 
 

In order to validate the proposed method, we have conducted a number of experiments in 

several simulated scenes and real-world scenes. In this section, we present the results of these 

experiments to demonstrate the performance of the proposed method. First of all, a scene of 

people walking in a simulated shopping mall [28] is depicted in Fig. 8, in which the numbers 

label the entrances/exits in the scene. The training trajectories (in grey) for MP clustering and 

the learned MPs (in red) are shown in Fig. 9 where a red solid-curve and a red dot-curve are 

used for differentiating double-directional trajectories in the scene, and multi-level prediction 

results for the current trajectories (none of them were used for training) are shown in Fig. 10. 

8 trajectories were predicted at different levels (in blue), since they match with MPs at 
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different credibility levels. Fig. 11 depicts the predicted motions and actual motions. It can be 

seen that the proposed method is reasonably effective in deploying adaptive predictions for 

different trajectories and the predicted motions (in blue) are consistent with the actual 

motions (in magenta). We have conducted 5 separated experiments in this scene and analyzed 

the deviation rate d_r of prediction by calculating the ratio between the deviated distance of 

the predicted destination and the actual destination, and the actual total traversed distance. As 

depicted in Table I, d_rmin , d_rmax and d_ravg of each experiment are listed, in which d_rmin 

and d_rmax mean the minimal and the maximal deviation rate, respectively, and d_ravg means 

the average deviation rate for all. It is found that the average deviation rate for each 

experiment is around 8% and the prediction accuracy can be considered as acceptable. 
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                             Fig. 8:  Simulated scene                      Fig. 9:  Training trajectories and clustered MP 

 
                          Fig. 10:  Prediction results                            Fig. 11:  Predicted and actual motions 
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TABLE I 
DEVIATION RATE OF PREDICTION FOR SIMULATION 

No. Number of humans 
for prediction 

Minimal deviation 
rate d_rmin 

Maximal deviation 
rate d_rmax 

Average deviation 
rate d_ravg 

1 8 5.693% 10.127% 8.296% 
2 12 5.372% 10.009% 8.192% 
3 9 5.921% 10.426% 8.397% 
4 7 4.925% 9.481% 7.975% 
5 13 5.097% 9.659% 8.022% 

 

Obviously, simulations do not necessarily indicate how the proposed method works in real-

world. For this reason, we captured a sequence of frames from a video camera looking down 

a shopping mall with people walking freely without any defined or agreed trajectories as 

shown in Fig. 12. There are several entrances and exits to the scene as depicted: entrance/exit 

‘1’ connects to some shops; entrances/exit ‘2’ connects to neighboring buildings; 

entrance/exit ‘3’ connects to up/down escalators. The frames were extracted at a rate of 25 

frames per second and a total of 19786 frames were obtained. Through Trajectory Extraction 

described in Section 3.1, a total of 326 observable human trajectories were extracted. Some of 

the extracted trajectories are depicted in Fig. 13, each of which is represented by a series of 

discrete positions which were recorded at sampled time steps. In Fig. 13(a), it could be seen 

that some humans shown in the top and bottom regions of the frame are not detected because 

of their incompleteness. They are not included in this frame, but may subsequently be 

considered if their view is improved. The false positive and negative rates of human detection 

are 12.1% and 15.8% respectively, and the accuracy rate of data association between frames 

is 79.5% [22]. 
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Fig. 12:  A frame of the scenario 

    
                                   (a)                                                                               (b)   

Fig. 13:  Extracted trajectories (a) Human detection results (b) Data association results 

    
            Fig. 14:  Trajectories for MP clustering                                   Fig. 15:  Clustered MP 

   
(a)                                                                               (b) 

Fig. 16:  Classified MPs at different credibility levels (a) higher level (b) lower level 
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Out of all extracted trajectories, we randomly select 296 trajectories for MP clustering and 

leave the remaining 30 trajectories for testing the prediction performance. Fig. 14 illustrates 

the selected 296 extracted trajectories, in which red curves and green curves represent bi-

directional trajectories between each pair of entrance and exit. There are altogether 20 MPs 

clustered as a result from MP Clustering (Fig. 15), in which the arrows describe motion 

directions of the clustered MPs. These 20 clustered MPs are classified into 8 credibility 

levels. Based on classification criteria of the clustered MPs as described in Section 3.3, it 

should be noted that compared with the MPs at a lower credibility level, the MPs at a higher 

credibility level are more reliable because they are clustered from more collective trajectories, 

as shown in Fig. 16, in which green solid-lines represent the trajectories, and magenta and 

blue solid-lines represent MPs in higher and lower credibility levels, respectively. In addition, 

the left and right bounds of the MPs are also shown for illustration in Fig. 16. 

   
                                           (a)                                                                                       (b) 

 
                                                                                       (c) 

Fig. 17:  Adaptive prediction results (a) long-term motion with more time steps (b) long-term motion with less 
time steps (c) single time step action 
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To further illustrate how prediction is adaptively made, we use the classified MPs for 

prediction on the remaining 30 trajectories. Fig. 17 depicts some adaptive prediction results in 

which the long-term motions are predicted based on the MPs at different credibility levels as 

shown in Fig. 16, respectively. In Fig. 17(a) and (b), the corresponding predicted long-term 

motions with more time steps and less time steps are shown by green lines. Black lines 

represent the actual motions and black dots denote the time step when the predictions were 

performed.  Fig. 17(c) depicts the predicted single time step action by the short green lines. 

A

b1: Origin

b2: The time step when the prediction
      was performed

b3: Actual destination

b4: Predicted destinationA: area of the shadowed region

32bb : distance between b2 and b3

42bb : distance between b2 and b4

 
Fig. 18:  Calculation of prediction error 

In order to evaluate the performance of the proposed method, we quantitatively compare the 

predicted motion of each trajectory with the corresponding actual motion. For the predicted 

motion T*k of each Tk at the time step t, we calculate an absolute error ek(t), which is defined 

as the deviated distance between the predicted motion and the actual motion after time step t. 

Fig. 18 illustrates how the absolute prediction error is calculated, which is given as 

                                                    
)(5.0 4232

)( bbbb

A
e tk 

 ,                                                (20) 

where 32bb and 42bb are the actual and predicted traversed distances, respectively, and A 

represents the area of the region between the actual motion and the predicted motion. In order 

to work out an overall prediction error for each trajectory, we calculate a series of ek(t), to 

generate a global prediction error εk of T*k at all possible time steps t when a prediction can 

be performed. t is set from 3 because changing angle information at historical time steps is 
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necessary for prediction and there is no changing angle information before 3 time steps. The 

calculation of εk is performed as 
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tk

k ,                                                       (21) 

where U is the total number of time steps of the human trajectory from the origin to the 

destination. 

 
Fig. 19:  Absolute prediction error of the proposed method and RSP for 30 testing trajectories 

Besides calculating the absolute prediction error of the proposed adaptive prediction 

method, we also calculate the absolute prediction error of the AR method for comparison. 

Since the AR method is for short-term prediction of one time-step, we apply it recursively, 

which results in a predicted MP with a number of future time steps. The recursively applied 

AR model is called the Recursive Short-term Predictor (RSP). It should be noted that other 

short-term predictors can replace the AR predictor just as well. Fig. 19 depicts absolute 

prediction errors of all 30 trajectories by using the proposed method and the RSP. For long-

term future motion predicted by the proposed method, the RSP generates a MP with the same 

number of future time steps for comparison. From Fig. 19, it can be seen that (1) the proposed 

method has lower absolute prediction errors in more trajectories than otherwise; (2) the 

proposed method produces significantly less errors in better-performed cases while produces 
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slightly more errors in worse-performed cases; (3) the proposed method produces a smaller 

sum error. In general, the proposed method improved 17.73% over the RSP in prediction of 

all 30 trajectories.  

   
                                           (a)                                                                                        (b) 

Fig. 20:  Prediction results of No.8 trajectory at the 8th time step (a) proposed method (b) RSP 

   
                                         (a)                                                                                         (b) 

Fig. 21:  Prediction results of No.11 trajectory at the 7th time step (a) proposed method (b) RSP 

For illustration purpose, the best case and the worst case predictions are depicted in Fig. 20 

and Fig. 21 for comparison, in which blue lines represent the MPs, and green lines and black 

lines represent the predicted and actual motions, respectively. In the best case in Fig. 20 

where the largest improvement is obtained by the proposed method, compared with the result 

of the RSP, the prediction was made at the time step when the trajectory started to change 

direction. The RSP (Fig. 20(b)) had worse performance because its predicted motion would 

keep the previous direction while the proposed method (Fig. 20(a)) made a better prediction 

based on the MP. In the worst case in Fig. 21, the current trajectory was acceptably similar to 

the matched MP, but certain deviation is also evident. As such, the proposed method (Fig. 

21(a)) produced a larger error while the RSP (Fig. 21(b)) produced a smaller error because the 
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trajectory had very little change in direction. Clearly, the proposed method performs better 

than the RSP when the trajectory changes direction frequently. 

 
Fig. 22:  Mean error of the proposed method and RSP for 10 real experiments 

In order to further test whether the proposed method can be reliably applied in different 

cases, we perform a number of experiments by orderly dividing the 326 extracted trajectories 

into groups of 296 and 30 trajectories according to a randomly assigned index to each 

trajectory. There are totally 10 sets of data altogether. In each set, the large group was used for 

analysis while the small group was used for testing. After the prediction, we calculate the 

average of the prediction error of all trajectories in each experiment as a mean error. In Fig. 

22, we plot the average prediction error of all 10 experiments. From Fig. 22, we can see that 

the proposed method performed better than the RSP in 7 out of 10 experiments. On average, 

the proposed method has a 5% improvement over the RSP in prediction accuracy. Fig. 23 

depicts the curvature of all 326 extracted trajectories. The curvature of each trajectory is 

calculated as the ratio between the total traversed distance from the origin to the destination 

and the straight line connecting the origin to the destination. We can see that most trajectories 

are very well-defined since most curvature values in the distribution are close to 1. In other 

words, most of the extracted trajectories do not change direction frequently. In fact, this is in 
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favor of RSP rather than the proposed method. If the trajectories change directions frequently, 

we would expect an even larger improvement by the proposed method.  
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Fig. 23:  Curvature of extracted trajectories 

Besides comparing the performance and robustness of the proposed method with the RSP, 

we further compare the proposed method with another related method. In the method 

presented in [14], spatial and probabilistic models are built sequentially and the learned 

models are used for trajectory labeling and atypical behavior detection in an automatic video 

surveillance system. It is noted that different experiment results are generated since the 

proposed method in this paper focuses more on human motion prediction based on learning 

and classifying MPs. Thus, a directly quantitative analysis in experiment results may not be 

feasible. As a result, we have conducted a qualitative comparison and three issues are 

identified which imply that the proposed method in this paper is superior to the method in 

[14]. First, the proposed method in this paper learns MPs and further classifies MPs into 

different credibility levels by analyzing characteristic of each MP, while the method in [14] 

only learns MPs and applies the learned MPs equally without knowing their credibility. 

Second, the method in [14] performs behavior recognition by classifying the new trajectory 

into one of the learned MP. The proposed method in this paper not only classifies the new 

trajectory into some existing MP but also predicts long-term future motion for incomplete 

trajectory based on the MP into which the trajectory is classified. Third, the proposed method 

has been evaluated both qualitatively and quantitatively. The reliability of the proposed 



 Page 29

method for different cases has also been evaluated by experiments. However, only one 

experimental case is presented in [14], and the results are only qualitatively described without 

any quantitative evaluation.  

V. CONCLUSIONS 

In this paper, we present a novel adaptive human motion analysis and prediction method. 

The proposed method clusters MPs based on observable trajectories extracted from a series of 

frames of a taken video and then classifies them into different credibility levels according to 

their mass and size information. It then predicts future motion based on matching current 

trajectories to classified MPs. The main contributions of the proposed method are that (1) it 

offers a viable approach for analyzing and adaptively predicting human motions of different 

number of time steps; (2) it provides a more comprehensive description of MPs including not 

only the learned MPs but also their evaluated credibility; (3) it adaptively makes long-term 

predictions of human future motion according to the credibility of the learned MPs. From the 

experiments based on simulated and real-world data, it can be concluded that the proposed 

method is effective in performing adaptive predictions for different future motions. For the 

proposed method, our future research work will focus on three aspects: (1) to investigate 

online learning of MPs for discerning the change of MPs more accurately; (2) to research the 

fusion of multiple feature dimensions for generating an integrated prediction result for human 

future behavior or intention; (3) to analyze human predicted behavior for incident analysis or 

anomaly detection in crowd surveillance.  
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