15,630 research outputs found

    Incremental Few-Shot Object Detection

    Get PDF
    Most existing object detection methods rely on the availability of abundant labelled training samples per class and offline model training in a batch mode. These requirements substantially limit their scalability to open-ended accommodation of novel classes with limited labelled training data. We present a study aiming to go beyond these limitations by considering the Incremental Few-Shot Detection (iFSD) problem setting, where new classes must be registered incrementally (without revisiting base classes) and with few examples. To this end we propose OpeN-ended Centre nEt (ONCE), a detector designed for incrementally learning to detect novel class objects with few examples. This is achieved by an elegant adaptation of the CentreNet detector to the few-shot learning scenario, and meta-learning a class-specific code generator model for registering novel classes. ONCE fully respects the incremental learning paradigm, with novel class registration requiring only a single forward pass of few-shot training samples, and no access to base classes -- thus making it suitable for deployment on embedded devices. Extensive experiments conducted on both the standard object detection and fashion landmark detection tasks show the feasibility of iFSD for the first time, opening an interesting and very important line of research.Comment: CVPR 202

    Context-Transformer: Tackling Object Confusion for Few-Shot Detection

    Full text link
    Few-shot object detection is a challenging but realistic scenario, where only a few annotated training images are available for training detectors. A popular approach to handle this problem is transfer learning, i.e., fine-tuning a detector pretrained on a source-domain benchmark. However, such transferred detector often fails to recognize new objects in the target domain, due to low data diversity of training samples. To tackle this problem, we propose a novel Context-Transformer within a concise deep transfer framework. Specifically, Context-Transformer can effectively leverage source-domain object knowledge as guidance, and automatically exploit contexts from only a few training images in the target domain. Subsequently, it can adaptively integrate these relational clues to enhance the discriminative power of detector, in order to reduce object confusion in few-shot scenarios. Moreover, Context-Transformer is flexibly embedded in the popular SSD-style detectors, which makes it a plug-and-play module for end-to-end few-shot learning. Finally, we evaluate Context-Transformer on the challenging settings of few-shot detection and incremental few-shot detection. The experimental results show that, our framework outperforms the recent state-of-the-art approaches.Comment: Accepted by AAAI-202

    Incremental Few-Shot Object Detection via Simple Fine-Tuning Approach

    Full text link
    In this paper, we explore incremental few-shot object detection (iFSD), which incrementally learns novel classes using only a few examples without revisiting base classes. Previous iFSD works achieved the desired results by applying meta-learning. However, meta-learning approaches show insufficient performance that is difficult to apply to practical problems. In this light, we propose a simple fine-tuning-based approach, the Incremental Two-stage Fine-tuning Approach (iTFA) for iFSD, which contains three steps: 1) base training using abundant base classes with the class-agnostic box regressor, 2) separation of the RoI feature extractor and classifier into the base and novel class branches for preserving base knowledge, and 3) fine-tuning the novel branch using only a few novel class examples. We evaluate our iTFA on the real-world datasets PASCAL VOC, COCO, and LVIS. iTFA achieves competitive performance in COCO and shows a 30% higher AP accuracy than meta-learning methods in the LVIS dataset. Experimental results show the effectiveness and applicability of our proposed method.Comment: Accepted to ICRA 202

    Few-shot Class-incremental Learning: A Survey

    Full text link
    Few-shot Class-Incremental Learning (FSCIL) presents a unique challenge in machine learning, as it necessitates the continuous learning of new classes from sparse labeled training samples without forgetting previous knowledge. While this field has seen recent progress, it remains an active area of exploration. This paper aims to provide a comprehensive and systematic review of FSCIL. In our in-depth examination, we delve into various facets of FSCIL, encompassing the problem definition, the discussion of primary challenges of unreliable empirical risk minimization and the stability-plasticity dilemma, general schemes, and relevant problems of incremental learning and few-shot learning. Besides, we offer an overview of benchmark datasets and evaluation metrics. Furthermore, we introduce the classification methods in FSCIL from data-based, structure-based, and optimization-based approaches and the object detection methods in FSCIL from anchor-free and anchor-based approaches. Beyond these, we illuminate several promising research directions within FSCIL that merit further investigation

    A Survey on Few-Shot Class-Incremental Learning

    Full text link
    Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than 20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that divides the field into five subcategories, including traditional machine learning methods, meta-learning based methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of computer vision such as image classification, object detection, and image segmentation, as well as in natural language processing and graph. We summarize the important applications. Finally, we point out potential future research directions, including applications, problem setups, and theory development. Overall, this paper offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and application perspective

    A Survey on Few-Shot Class-Incremental Learning

    Get PDF
    Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than 20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that divides the field into five subcategories, including traditional machine learning methods, meta learning-based methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of computer vision such as image classification, object detection, and image segmentation, as well as in natural language processing and graph. We summarize the important applications. Finally, we point out potential future research directions, including applications, problem setups, and theory development. Overall, this paper offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and application perspective

    Memory Based Online Learning of Deep Representations from Video Streams

    Full text link
    We present a novel online unsupervised method for face identity learning from video streams. The method exploits deep face descriptors together with a memory based learning mechanism that takes advantage of the temporal coherence of visual data. Specifically, we introduce a discriminative feature matching solution based on Reverse Nearest Neighbour and a feature forgetting strategy that detect redundant features and discard them appropriately while time progresses. It is shown that the proposed learning procedure is asymptotically stable and can be effectively used in relevant applications like multiple face identification and tracking from unconstrained video streams. Experimental results show that the proposed method achieves comparable results in the task of multiple face tracking and better performance in face identification with offline approaches exploiting future information. Code will be publicly available.Comment: arXiv admin note: text overlap with arXiv:1708.0361
    corecore