46 research outputs found

    On synthesizing Skolem functions for first order logic formulae

    Full text link
    Skolem functions play a central role in logic, from eliminating quantifiers in first order logic formulas to providing functional implementations of relational specifications. While classical results in logic are only interested in their existence, the question of how to effectively compute them is also interesting, important and useful for several applications. In the restricted case of Boolean propositional logic formula, this problem of synthesizing Boolean Skolem functions has been addressed in depth, with various recent work focussing on both theoretical and practical aspects of the problem. However, there are few existing results for the general case, and the focus has been on heuristical algorithms. In this article, we undertake an investigation into the computational hardness of the problem of synthesizing Skolem functions for first order logic formula. We show that even under reasonable assumptions on the signature of the formula, it is impossible to compute or synthesize Skolem functions. Then we determine conditions on theories of first order logic which would render the problem computable. Finally, we show that several natural theories satisfy these conditions and hence do admit effective synthesis of Skolem functions

    Partial Quantifier Elimination By Certificate Clauses

    Full text link
    We study partial quantifier elimination (PQE) for propositional CNF formulas. In contrast to full quantifier elimination, in PQE, one can limit the set of clauses taken out of the scope of quantifiers to a small subset of target clauses. The appeal of PQE is twofold. First, PQE can be dramatically simpler than full quantifier elimination. Second, it provides a language for performing incremental computations. Many verification problems (e.g. equivalence checking and model checking) are inherently incremental and so can be solved in terms of PQE. Our approach is based on deriving clauses depending only on unquantified variables that make the target clauses redundant\mathit{redundant}. Proving redundancy of a target clause is done by construction of a ``certificate'' clause implying the former. We describe a PQE algorithm called START\mathit{START} that employs the approach above. We apply START\mathit{START} to generating properties of a design implementation that are not implied by specification. The existence of an unwanted\mathit{unwanted} property means that this implementation is buggy. Our experiments with HWMCC-13 benchmarks suggest that START\mathit{START} can be used for generating properties of real-life designs

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Symbolic reactive synthesis

    Get PDF
    In this thesis, we develop symbolic algorithms for the synthesis of reactive systems. Synthesis, that is the task of deriving correct-by-construction implementations from formal specifications, has the potential to eliminate the need for the manual—and error-prone—programming task. The synthesis problem can be formulated as an infinite two-player game, where the system player has the objective to satisfy the specification against all possible actions of the environment player. The standard synthesis algorithms represent the underlying synthesis game explicitly and, thus, they scale poorly with respect to the size of the specification. We provide an algorithmic framework to solve the synthesis problem symbolically. In contrast to the standard approaches, we use a succinct representation of the synthesis game which leads to improved scalability in terms of the symbolically represented parameters. Our algorithm reduces the synthesis game to the satisfiability problem of quantified Boolean formulas (QBF) and dependency quantified Boolean formulas (DQBF). In the encodings, we use propositional quantification to succinctly represent different parts of the implementation, such as the state space and the transition function. We develop highly optimized satisfiability algorithms for QBF and DQBF. Based on a counterexample-guided abstraction refinement (CEGAR) loop, our algorithms avoid an exponential blow-up by using the structure of the underlying symbolic encodings. Further, we extend the solving algorithms to extract certificates in the form of Boolean functions, from which we construct implementations for the synthesis problem. Our empirical evaluation shows that our symbolic approach significantly outperforms previous explicit synthesis algorithms with respect to scalability and solution quality.In dieser Dissertation werden symbolische Algorithmen für die Synthese von reaktiven Systemen entwickelt. Synthese, d.h. die Aufgabe, aus formalen Spezifikationen korrekte Implementierungen abzuleiten, hat das Potenzial, die manuelle und fehleranfällige Programmierung überflüssig zu machen. Das Syntheseproblem kann als unendliches Zweispielerspiel verstanden werden, bei dem der Systemspieler das Ziel hat, die Spezifikation gegen alle möglichen Handlungen des Umgebungsspielers zu erfüllen. Die Standardsynthesealgorithmen stellen das zugrunde liegende Synthesespiel explizit dar und skalieren daher schlecht in Bezug auf die Größe der Spezifikation. Diese Arbeit präsentiert einen algorithmischen Ansatz, der das Syntheseproblem symbolisch löst. Im Gegensatz zu den Standardansätzen wird eine kompakte Darstellung des Synthesespiels verwendet, die zu einer verbesserten Skalierbarkeit der symbolisch dargestellten Parameter führt. Der Algorithmus reduziert das Synthesespiel auf das Erfüllbarkeitsproblem von quantifizierten booleschen Formeln (QBF) und abhängigkeitsquantifizierten booleschen Formeln (DQBF). In den Kodierungen verwenden wir propositionale Quantifizierung, um verschiedene Teile der Implementierung, wie den Zustandsraum und die Übergangsfunktion, kompakt darzustellen. Wir entwickeln hochoptimierte Erfüllbarkeitsalgorithmen für QBF und DQBF. Basierend auf einer gegenbeispielgeführten Abstraktionsverfeinerungsschleife (CEGAR) vermeiden diese Algorithmen ein exponentielles Blow-up, indem sie die Struktur der zugrunde liegenden symbolischen Kodierungen verwenden. Weiterhin werden die Lösungsalgorithmen um Zertifikate in Form von booleschen Funktionen erweitert, aus denen Implementierungen für das Syntheseproblem abgeleitet werden. Unsere empirische Auswertung zeigt, dass unser symbolischer Ansatz die bisherigen expliziten Synthesealgorithmen in Bezug auf Skalierbarkeit und Lösungsqualität deutlich übertrifft

    Specification theories for probabilistic systems

    Get PDF

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers
    corecore