9,468 research outputs found

    Incremental Recompilation of Knowledge

    Full text link
    Approximating a general formula from above and below by Horn formulas (its Horn envelope and Horn core, respectively) was proposed by Selman and Kautz (1991, 1996) as a form of ``knowledge compilation,'' supporting rapid approximate reasoning; on the negative side, this scheme is static in that it supports no updates, and has certain complexity drawbacks pointed out by Kavvadias, Papadimitriou and Sideri (1993). On the other hand, the many frameworks and schemes proposed in the literature for theory update and revision are plagued by serious complexity-theoretic impediments, even in the Horn case, as was pointed out by Eiter and Gottlob (1992), and is further demonstrated in the present paper. More fundamentally, these schemes are not inductive, in that they may lose in a single update any positive properties of the represented sets of formulas (small size, Horn structure, etc.). In this paper we propose a new scheme, incremental recompilation, which combines Horn approximation and model-based updates; this scheme is inductive and very efficient, free of the problems facing its constituents. A set of formulas is represented by an upper and lower Horn approximation. To update, we replace the upper Horn formula by the Horn envelope of its minimum-change update, and similarly the lower one by the Horn core of its update; the key fact which enables this scheme is that Horn envelopes and cores are easy to compute when the underlying formula is the result of a minimum-change update of a Horn formula by a clause. We conjecture that efficient algorithms are possible for more complex updates.Comment: See http://www.jair.org/ for any accompanying file

    An efficient, parametric fixpoint algorithm for analysis of java bytecode

    Get PDF
    Abstract interpretation has been widely used for the analysis of object-oriented languages and, in particular, Java source and bytecode. However, while most existing work deals with the problem of flnding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying flxpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based—) flxpoint algorithms rely on relatively inefHcient techniques for solving inter-procedural caligraphs or are speciflc and tied to particular analyses. We also argüe that the design of an efficient fixpoint algorithm is pivotal to supporting the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. The algorithm is parametric -in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins"-, multivariant, and flow-sensitive. Also, is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are given and discussed with an example. We also provide some performance data from a preliminary implementation of the analysis

    LINVIEW: Incremental View Maintenance for Complex Analytical Queries

    Full text link
    Many analytics tasks and machine learning problems can be naturally expressed by iterative linear algebra programs. In this paper, we study the incremental view maintenance problem for such complex analytical queries. We develop a framework, called LINVIEW, for capturing deltas of linear algebra programs and understanding their computational cost. Linear algebra operations tend to cause an avalanche effect where even very local changes to the input matrices spread out and infect all of the intermediate results and the final view, causing incremental view maintenance to lose its performance benefit over re-evaluation. We develop techniques based on matrix factorizations to contain such epidemics of change. As a consequence, our techniques make incremental view maintenance of linear algebra practical and usually substantially cheaper than re-evaluation. We show, both analytically and experimentally, the usefulness of these techniques when applied to standard analytics tasks. Our evaluation demonstrates the efficiency of LINVIEW in generating parallel incremental programs that outperform re-evaluation techniques by more than an order of magnitude.Comment: 14 pages, SIGMO
    • …
    corecore